Multi-Arm Bandits

Reinforcement Learning(RL) uses training
information that ‘Evaluate’ the actions

Evaluative feedback indicates ‘How good the
action taken was’

The multi-armed bandit problem is a classic
reinforcement learning example

The multi-armed bandit, a slot machine with
n arms (bandits) with each arm having its own
probability distribution of success

Pulling any one of the arms gives a stochastic
reward of either R=+1 for success, or R=0 for
failure

ﬁ

Bandit

70%

current
success
rate

~

Bandit

30%

current
success
rate

_

}

Next

~

Bandit

current
success
rate

choice?

g

Bandit

40%

current
success
rate

D1

Probability Distribution

- It is a listing of the probabilities
of all the possible outcomes that P.robability
could occur if the experiment Distribution

was done ' l |

- Discrete Distribution: Random : T
Variable can take only limited ~ [REEEERED PD
number of values

~ Ex: No. of heads in two tosses

Binomial
Distribution

-~ No. of dots on Dies

~ Continuous Distribution: Random
Variable can take any value

-~ Ex: Height of students in the Poisson
class Distribution

Normal
Distribution

Discrete Distribution

\

Random Variable can take only
limited number of values

- Ex: No. of heads in two tosses Frequency P(X=X)

-~ No. of dots on Dies 1

y

Tossing a coin three times:
S = {HHH, HHT, HTH, HTT,

THH, THT, TTH, TTT}

- Let X represents “No. of heads”

0

l 3
2 3
3 l

Binomial Distribution

- There are certain phenomena in nature which can be
identified as Bernoulli’s processes, in which:

-

.

There is a fixed number of n trials carried out

Each trial has only two possible outcomes say success or
failure, true or false etc.

Probability of occurrence of any outcome remains same
over successive trials

Trials are statistically independent

Binomial distribution is a discrete PD which expresses
the probability of one set of alternatives - success (p)

and failure (q)
PX=x)=%Cp"q"" |

n = no. of trials undertaken

r = no. of successes desired

p = probability of success

g = probability of failure p>0.5

Poisson Distribution

-~ When there is a large number of
trials, but a small probability of 04
success, binomial calculation
becomes impractical

03

- If A = mean no. of occurrences of an
event per unit interval of
time/space, then probability that it
will occur exactly ‘x’ times is given

by

02

01
AX e~ 4
x! "o

P(x) =

Normal Distribution

- |t is a continuous PD i.e. random
variable can take on any value within a
given range. Ex: Height, Weight, Marks
etc.

- Developed by Karl Gauss, so also called
Gaussian Distribution

~ It is symmetrical, unimodal (one peak)

~ X axis represents random variable like
height, weight etc.

- Y axis represents its probability density
function

FRERREREA AL AEESE BRER
8 ¥ 4 6

- Mean=y,SD =0

MAB Interactive Demo

Total Total
Reward Plays
14 24 4- R
[
? . .
2 p
0918 077g083
: : 01 04 ! .
_2 R
Amn 1 Am2 | Am3 Arm 4 Arm §
Rewards: G 2 2 2 2 -
Pulls: 8 4 4 4 4 "
Estimated Probs: 0.750 0.500 0.500 0.500 0.500 0
UCBs: 1.641 1.761 1.761 1.761 1.761

https://perso.crans.org/besson/phd/MAB interactive demo/

Cont...

- MAB deal with ‘Exploitation & Exploration’ of the core ideas in
RL

- For example:

- Among the various slot machines, which slot machine should
selected and lower the lever?

~ How can to make the best return?

- In the full reinforcement learning problem, a MAB algorithm is
always used to optimizes the solution

Multi Bandit Problem

|

Multi bandit problems are problems in the area of sequential
selection of experiments

At each stage there are k possible actions or choices of experiment
An information or a reward is resulted based on the choice of action

There must strike a balance between gaining rewards and gaining
information to maximize the present value of the rewards received

That leads to exploitation/exploration dilemma
MAB deal with ‘Exploitation & Exploration’ of the core ideas in RL
For example:

- Among the various slot machines, which slot machine should selected
and lower the lever?

~ How can to make the best return?

Decision-making involves a
fundamental choice of:

Exploitation: Make the best
decision given current
information

Exploration: Gather more
information

The best long-term strategy may
involve short-term sacrifices to
gather enough information to
make the best overall decisions

Examples

~Restaurant Selection
- Exploitation: Go to your favorite restaurant

- Exploration: Try a new restaurant

~Online Banner Advertisements
- Exploitation: Show the most successful advert
- Exploration: Show a different advert

~Qil Drilling
- Exploitation: Drill at the best known location
- Exploration: Drill at a new location

~Game Playing
- Exploitation: Play the move you believe is best
- Exploration: Play an experimental move

K-armed Bandit Problem

- The k-armed bandit, with k arms, each having an unknown,
possibly different distribution of payoffs/rewards

- In k-armed bandit problem, each of the k actions has an
expected or mean reward given that, based on action
selected is the value of that action (Action Value):

g«(a) =E[R; | A;=a]

- Where,
- t- step or play number
- At-Action at time t
- Rt - Reward at time t

- g* (a)- True value (expected reward) of action

Action-value Methods

|

Action-value methods are simple methods for estimating the
values of actions

This estimates to make action selection decisions

g(a) denote the true (actual) value of action a, the true value
of an action is the mean reward received when that action is
selected

The estimated value on the t'" time step as Q,(a)

If by the t™" time step action a has been chosen N.(a) times
prior to t, rewards R, R, . . ., RN.(a), then its value is
estimated to be

R1+R2+"'+RN‘(G)

Qt (a’) - Nt (a)

Action-value Methods

* For example, estimate action values as sample averages:

sum of rewards when a taken prior to ¢ Zf;% It > Ly

Qt(a) =

number of times a taken prior to ¢ N Zf;% 14—

* The sample-average estimates converge to the true values
If the action is taken an infinite number of times

lim Qi(a) = g«(a)

N¢(a)— o0

The number of times action a
has been taken by time ¢

Example 2(May_2024) 10M

- You are playing a slot machine with three arms.

~ Each time you pull an arm, you either win $1 or lose $1
with equal probability.

- You decide to randomly choose an arm to pull each time.

- If you play the slot machine 100 times, how much money
do you expect to win or lose on average?

Example: Clinical Trials

- There are k treatments for a given disease

- Patients arrive sequentially at the clinic and must be treated
immediately by one of the treatments

- It is assumed that response from treatment is immediate

- So the effectiveness of the treatment of the present patient
receives is known when the next patient to be treated

- |t is not known precisely which one of the treatments is best, but
one must decide which treatment to give each patient

- The goal is to cure as many patients as possible

- This may require to give a patient a treatment which is not the
one that looks best at the present time in order to gain
information that may be of use to future patients

Types of Action-value Methods

- Greedy Action Selection Method
- g-greedy Action Selection Method
- Upper-Confidence-Bound(UCB) Action Selection Method

Greedy Action Selection

The simplest action selection rule is to select the action with
highest estimated action value is, called the greedy actions
selection

At step t one of the greedy actions, A", for which

Q(A) = max, Q(a) A¢ = argmax Q¢(a)
argmax, f(a) - a value of a at which f(a) takes its maximal value

Greedy action selection always exploits current knowledge to
maximize immediate reward

It spends no time at all sampling apparently inferior actions to see
if they might really be better

g-greedy Action Selection Method

|

Exploitation is the right thing to do to maximize the expected
reward on the one step

But Exploration may produce the greater total reward in the
long run

A simple alternative method, ¢-greedy action selection method
behave greedily most of the time

However, with small probability €, select the action randomly
from all the actions with equal probability, independently of
the action value estimates
arg max, Q(a) with probability 1 — ¢ SNt [E1ile]s
A+ : . s ,
a random action with probability — Exploration

An advantage of these methods is that, as the number of plays
increases, every action will be sampled an infinite number of
times, Nt(a) — ~ for all a, ensure the Q (a) converge to q(a)

g-Greedy Methods on the

" e=0.1
=001

i
Average & =0 (groey)
reward

0s
0
0 330 00 7% 1000
Steps

100% _

S0%

% o |

Optimal
action s .

e=00I1

€ = () (greedy)
20% .

0%

T T T T 1
0 250 S0 750 1000

Steps

Conceder a set of 2000 randoml
n-armed bandit tasks with n = 10
For each bandit, the action values,
, 10, were selected according to a
(Gaussian) distribution with mean 0
Figure shows the performance and b
various methods as they improve with
over 1000

Steps

Figure compares a greedy method with t
e-greedy methods (¢ = 0.01 and € = 0.1)

The upper graph shows the increase in ex
reward with experience

The greedy method improved slightly
the other methods at the very begi
leveled off at a lower level

It achieved a reward per step
compared with the best possi
this testbed

e-Greedy Methods on the 10-ArmedTestbe

¢ =0 (greedy)

action % .

¢ = () (greedy)

The greedy method performs signifi
the long run because it often gets st
suboptimal actions

The e-greedy methods perform better
continue to explore, and to improve th
of recognizing the optimal action

The € = 0.1 method explores more and fi
optimal action earlier, but never selects it
than 91% of the time

The € = 0.01 method improves more slowly,
performs better than the € = 0.1 method
performance measures

It is also possible to reduce € over ti
the best of both high and low valu

Example:

Consider an example of 10 bandits each 100
with their own individual success m— Bandit #1
probabilities and € = 0.1 — Bandft #2
Bandit #1 = 10% success rate SN Bandit #3

o
o

I Bandit #4
Bandit #2 = 50% success rate — Band:t #5
Bandit #3 = 60% success rate s Bandit #6

s Bandit #7
s Bandit #8
I Bandit #9
s Bandit #10

Bandit #4 = 80% success rate
Bandit #5 = 10% success rate
Bandit #6 = 25% success rate
Bandit #7 = 60% success rate
Bandit #8 = 45% success rate
Bandit #9 = 75% success rate
Bandit #10 = 65% success rate 20
By training the agent for 10,000 episodes

per experiment, the average proportion of
bandits chosen by the agent as a function 05
of episode number, is shown in Fig 0

D
o

Bandit Action Choices (%)
=N
o

Example:3

- An agent playing a slot machine with three arms each with
their own individual success probabilities and € = 0.4.
Bandit #1 = 40% success rate, Bandit #2 = 70% success rate
and Bandit #3 = 80% success rate. Each time agent pull an
arm, it either reward $1 or -$1. If it play the slot machine
10000 times, calculate expected cumulative reward.

Comparison Between Greedy and e-Greedy

- The advantage of e-greedy over greedy methods depends
on the task

- |If the reward variance is been larger, 10 instead of 1, it
takes more exploration to find the optimal action, and
e-greedy methods is better relative to the greedy method

- |If the reward variances is zero, then the greedy method
would know the true value of each action after trying it
once

- In this case the greedy method perform best because it
would soon find the optimal action and then never explore

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qt (a) ~ (x (a) . Ya action-value estimates

* Define the greedy action at time t as

A7 = argmax Q+(a)

- If A, = A; then you are exploiting
If A; %= A7 then you are exploring

* You can’t do both, but you need to do both

* You can never stop exploring, but maybe you should explore
less with time. Or maybe not.

Example:4 (IT_23_10M)

|

Consider a k-armed bandit problem with k = 4 actions,
denoted 1, 2, 3, and 4.

Consider applying to this problem a bandit algorithm using €
-greedy action selection, sample-average action-value
estimates, and initial estimates of Q1(a) = 0, for all a.

Suppose the initial sequence of actions and rewards is A1 =
1, R1=1,A2=2,R2=1,A3=2,R3=2,AAd=2,R4 =2, A5 = 3,
R5 = 0.

On some of these time steps the € case may have occurred,
causing an action to be selected at random.

On which time steps did this definitely occur? On which time
steps could this possibly have occurred?

Incremental Implementation

- The action-value methods estimate action values as sample
averages of observed rewards

R1+R2+"'+RN,(“)

Oule) = Ni(a)

- For each action ‘a’, a record of all the rewards that have
followed the selection of that action needs to be maintained

- Each additional reward following a selection of action ‘a’
requires more memory to store it and results in more
computation required to determine Q,(a)

- Instead of recalculating the sum every time, incrementally
update the sample average

Cont... 1 N il £ i il 15

-~ For some action, let Qe (a)
denote the estimate for its |k
Kt reward, the average of Qi = 7D R
its first k = 1 rewards =1 =
- Given this average and a . (R,c +> _R;
K" reward for the action, k i—1
R., then the average of all s = (Re + (k — 1)@k + Qr — Qi)
‘K’ rewards can be .
computed by = i (R;c + kQr — Qk)
~ This implementation - Qk"“'l]é[Rk —Qk],

requires memory only for

Q & ‘k’, and only the | |) .
small computation for NewEstimate < OldEstimate + StepSize | Target — OldEstimate

h new rewar
each new reward Expression [Target - OldEstimate] is an error

step-size parameter (StepSize) changes fr

Stationary vs Nonstationary Problem

- |In a stochastic processes, a stationary and a nonstationary
problem refer to the nature of the statistical properties of a

process over time

- Stationary Problem:

- A stationary Problem has statistical properties (like mean,
variance, etc) that do not change over time

- Example: Daily temperature deviation from the monthly mean

- Nonstationary Problem:

- In a nonstationary problem, the environment's underlying
characteristics (statistical properties) change over time

- Example: Stock Market Index Prices, GDP growth

Tracking a Nonstationary Problem

- In a stationary environment, the
reward distributions for the multi
bandits arms are constant, so an
agent can learn over time and use its
knowledge to make better decisions

—
L2

=
T

- But in a nonstationary environment,
the reward distributions of the arms
are not fixed but changed
unpredictably

-
-

-
A

25 of cpuimal action

=
~>

i w i, ﬂl N
Ml W]MW 3
So the optimal action can change and

the agent needs to adjust its 'o 0 @
behavior accordingly to track the
best-performing options

=
-

Cont...

~ The averaging methods discussed =~ — Qk+a[Rk_Qk]
are appropriate in a stationary

environment, but not if the = aRy+(1-)0k
bandit is changing over time = aRy+(1—-a)|aRy 1+ (1—a)Qx 1]
-~ As most of the reinforcement = aRy+(1-a)aRy +(1
learning problems are = aRy+(1- a)aRk 1+ (1-a)aRy+
nonstationary, weight recent oot (L-) laR + (1-)*Q,

rewards more heavily than
long-past ones by using a constant
step-size parameter

= Qr+a| R —
Qi1 = G .a[¢ Q"] This results in Q,,, being a wei
-~ Where the step-size parameter a past rewards and the initial

€ (0, 1] is constant

k
(1-a)Qi+) o(l-a) 'R
=1

Optimistic Initial Values

Epsilon-Greedy Algorithms are dependent on the initial
action-value estimates Q, and are biased by their initial
estimates

Optimistic Initial Values are used to encourage exploration in
the early stages of learning

In many RL algorithms, the agent learns by balancing
exploration and exploitation

Without exploration, an agent might get stuck in suboptimal
policies and never discover better alternatives

By assigning optimistic initial values to actions or states, the
agent is initially “overestimating” the reward it will get from
those actions

This makes the agent more llkely to explore less-visited or

1 IAAAI’*A 'v_ 9 ﬂﬂ& . B N -IA Lkh Aﬂlﬁl ﬂ*ﬁﬂAﬁ A: *lﬂﬂ!lﬁ‘l‘“

Cont...

optimistic, greedy
QO - 5. €= 0

m-

realistic, €-greedy
Op=0, €=0.1

% 0%
Optimal
action 40 -

0%

0% ! | | | |

Plays

- The agent is more “optimistic”
about what it might find, leading
it to explore different actions
before settling on an optimal
policy

|

|

Figure shows the perfor
10-armed bandit testbe
method using Q, = +5, fo
e-greedy method with Q, =0

Both methods used a constan
parameter, a

Initially, the optimistic method
performs worse because it explo
more, but eventually it performs
because its exploration decreases
time

This technique for encouragi
exploration effective on s
problems, but it is not
nonstationary proble

Upper Confidence Bound (UCB) action sele

- Simple strategies like e-greedy choose either to explore or
exploit based on a fixed probability, € = 0.4

- This strategy can lead to issues:

- Qver-exploration: It might waste too many pulls on less
promising arms.

- Under-exploration: If the exploration rate is too low, the agent
might not discover better arms that it has not pulled enough to
evaluate properly.

- The Upper Confidence Bound (UCB) algorithm address the
shortcomings of e-greedy methods

- It uses uncertainty in the action-value estimates for balancing
exploration and exploitation

UCB's Approach

UCB dynamically adjusts between
exploration and exploitation based on
how many times each arm has been
pulled and the uncertainty around its
performance

It is guided by the principle that arms
that have been pulled fewer times should
be explored more

But as the agent gains more data or ‘t’
approaches larger value, it can exploit
the arms that consistently perform well

In the UCB, the square-root term is a
measure of the uncertainty or variance in
the estimate of a’s value

A, = argmax, (Qt(a) +C

(2
N

Exploit Explore

c > 0 controls the degree of

The probability that the slot machine
may be the optimal slot machine

A; = argmax [Qt(a) +{c
a

Cont...

- Each time a is selected the uncertainty
is reduced as Nt(a) increases

15} UEB ¢=2
! ‘il Loty A ‘f(‘m“ﬂ‘ .r.lvq'a“r]’{.m/«‘ .v,}’fnk'-\.""'”q‘\'?J.“lf“‘]: X "ﬁ‘"".{(‘jl"“l‘

- But each time an action a is selected |
e-greedy £=0.1

‘t’ is increased; the uncertainty

estimate is increased Average

-~ The use of the natural logarithm means """

that the increase gets smaller over
time

05¢

- As time goes by it will be a longer o
wait, and thus a lower selection
frequency

So UCB explores more to systematically
reduce uncertainty but its exploration
reduces over time

Example:4

- After 12 iterations of the UCB 1 algorithm applied on a
4-arm bandit problem, we haven1 =3,n2=4,n3 =3, n4
=2 and Q12(1) = 0.55, Q12(2) = 0.63, Q12(3) = 0.61,
Q12(4) = 0.40. Which arm should be played next?

Gradient Bandits

Unlike value-based methods, which learn a value function for
states or actions, Gradient Bandits directly optimize the
parameters, a numerical preference H (a) for each action ‘a’

It’s particularly useful in environments where the agent needs
to learn a probabilistic policy rather than a deterministic one

In Gradient Bandits, the policy is represented as a probabilistic
model, m (a) for the probability of taking action ‘a’ at time ‘t’,
according to a soft-max distribution as:

eHl(a))

Pr{Ai=a} = S () = m(a)
b=1

Cont...

- Gradient Bandits uses the gradient ascent technique to update't
parameters H (a)
Hi11(Ar) = Hi(Ay) +0«’(Rt = Rt) (1 o7 Wt(At)), and

Hyi1(a) = Hy(a) — a(R; — Re)m(a), Va # A,

- R is the average of all the rewards up through and including time

-~ The R: term serves as a baseline with which the reward is
compared

- |If the reward is higher than the baseline, then the probability of
taking At in the future is increased

- If the reward is below baseline, then probability is decreased

- The policy parameters are updated based on the reward feedb
from the environment

Cont...

- Figure shows results with the 100% [
gradient-bandit algorithm on a variant of
the 10-armed testbed, using normal

= " with baseline

a=04
distribution with a mean of +4 and unit Op:f:nal 60%
: _ S
variance action 0% i without baseline
~ This shifting up of all the rewards has N
absolutely no affect on the |

0% t

gradient-bandit algorithm because of 0 250 500 750
the reward baseline term, which Steps

instantaneously adapts to the new level Gradient-bandit algorithkns
not action values, but acti

preferences, and favor
preferred actions in
probabilistic mann
soft-max distrib

But iighe baseline were omitted, that
is, if was taken to be constant zero,
then performance would be significantly
degraded, as shown in the figure

Derivation of gradient-bandit algorithm

In exact gradient ascent:

OE [R:]

Her1(a) = He(a) + 9H(3) ’

where:

E[R] = > me(b)q.(b).
b

OE[R] _ O [_—— b]
dH(3) ~ 9H:(3) ; (P)a.(5)
= zb: a(b) 5 5)

— Z (q*(b) Xt) g;_zg:;

where X; does not depend on b, because >, % —5.0

OH:(3) Zb: (g«(b) — Xt) 9H.(3)
= 3= me(5) (au(6) = Xo) i/ we()
—4 || -(q*(At) — Xt) 867;—_;5(,23) /’/Tt(At)]

— 1K -(Rt = f\’t) 687;_;5(/23) /ﬂ't(At)] s

where here we have chosen X; — R:; and substituted R; for g+« (A¢),
which is permitted because E[R:|A:] = g«(A:).

For now assume: % = 7w¢(b)(1s=p — m(3)). Then:

— E[(Rt —= ’:?t)ﬂ't(At)(lazAt = 7rt(a))/7rt(At)]
= E[(Re — Re) (1aen, — 7:(3))] -

Het1(3) = He(3) + a(Re — Re) (1s=a, — m+(3)), (from (1), QED

Thus it remains only to show that

O ¢ (b)
OH(3)

== 7rt(b)(la=b — 7rt(a)).

Recall the standard quotient rule for derivatives:

9 [f(x) 21 g(x) — F(x)2&X)
Ix [g(X)] g(x)? i

Using this, we can write...

"! l"!g(x) — f(x)!' %,l;‘l

adx

Quotient Rule: o f(x) —
Ox | g(x)

g(x)?

Ome(b) o
6Ht(a) - aHt(a)

(D)

o o eh:(b)

ce=1
he(b) o k _ efir(c)
de''t Elé=1 eht(C) o= eht(b) Zc—l e

BHt a aHt a
= L (QR)
<Z§=1 eh‘(c))

1. ,eh(a) Z§=1 eh:(c) _ ghe(b)gh:(a)
2
(Zlc(=1 eht(c))
1,_zeh(b) ehc(b) ghe(a)
Zc=1 eht(C) (Zlc(zl eht(C))

1, p(b) — e (b)me(a)
(b)) (Laep — 7e(3))- (Q.E.D.)

(5= = &)

