
Multi-Arm Bandits
► Reinforcement Learning(RL) uses training 

information that ‘Evaluate’ the actions

► Evaluative feedback indicates ‘How good the 
action taken was’

► The multi-armed bandit problem is a classic 
reinforcement learning example

►  The multi-armed bandit, a slot machine with 
n arms (bandits) with each arm having its own 
probability distribution of success

► Pulling any one of the arms gives a stochastic 
reward of either R=+1 for success, or R=0 for 
failure 



Probability Distribution
► It is a listing of the probabilities 

of all the possible outcomes that 
could occur if the experiment 
was done

► Discrete Distribution: Random 
Variable can take only limited 
number of values

► Ex: No. of heads in two tosses

► No. of dots on Dies

► Continuous Distribution: Random 
Variable can take any value

► Ex: Height of students in the 
class



Discrete Distribution
► Random Variable can take only 

limited number of values

► Ex: No. of heads in two tosses

► No. of dots on Dies

► Tossing a coin three times:        
S = {𝐻𝐻𝐻, 𝐻𝐻𝑇, 𝐻𝑇𝐻, 𝐻𝑇𝑇,           

           𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇}

► Let X represents “No. of heads”

    

 



Binomial Distribution
► There are certain phenomena in nature which can be 

identified as Bernoulli’s processes, in which:
► There is a fixed number of n trials carried out

► Each trial has only two possible outcomes say success or 
failure, true or false etc.

► Probability of occurrence of any outcome remains same 
over successive trials 

► Trials are statistically independent

► Binomial distribution is a discrete PD which expresses 
the probability of one set of alternatives – success (p) 
and failure (q)

►  
► n = no. of trials undertaken 

► r = no. of successes desired 

► p = probability of success 

► q = probability of failure



Poisson Distribution
► When there is a large number of 

trials, but a small probability of 
success, binomial calculation 
becomes impractical

► If λ = mean no. of occurrences of an 
event per unit interval of 
time/space, then probability that it 
will occur exactly ‘x’ times is given 
by



Normal Distribution
► It is a continuous PD i.e. random 

variable can take on any value within a 
given range. Ex: Height, Weight, Marks 
etc.

► Developed by Karl Gauss, so also called 
Gaussian Distribution

► It is symmetrical, unimodal (one peak)

► X axis represents random variable like 
height, weight etc.

► Y axis represents its probability density 
function

► Mean = µ, SD = σ 



MAB Interactive Demo

https://perso.crans.org/besson/phd/MAB_interactive_demo/



Cont...

► MAB deal with ‘Exploitation & Exploration’ of the core ideas in 
RL

► For example: 

► Among the various slot machines, which slot machine should 
selected and lower the lever? 

► How can to make the best return? 

► In the full reinforcement learning problem, a MAB algorithm is 
always used to optimizes the solution 



Multi Bandit Problem 
► Multi bandit problems are problems in the area of sequential 

selection of experiments

► At each stage there are k possible actions or choices of experiment

► An information or a reward is resulted based on the choice of action

► There must strike a balance between gaining rewards and gaining 
information to maximize the present value of the rewards received 

► That leads to exploitation/exploration dilemma 

► MAB deal with ‘Exploitation & Exploration’ of the core ideas in RL

► For example: 

► Among the various slot machines, which slot machine should selected 
and lower the lever? 

► How can to make the best return? 



The Exploration/Exploitation Dilemma
► Decision-making involves a 

fundamental choice of:

► Exploitation: Make the best 
decision given current 
information

► Exploration: Gather more 
information

► The best long-term strategy may 
involve short-term sacrifices to 
gather enough information to 
make the best overall decisions



Examples
►Restaurant Selection
► Exploitation: Go to your favorite restaurant
► Exploration: Try a new restaurant

►Online Banner Advertisements
► Exploitation: Show the most successful advert 
► Exploration: Show a different advert
►Oil Drilling
► Exploitation: Drill at the best known location 
► Exploration: Drill at a new location
►Game Playing
► Exploitation: Play the move you believe is best 
► Exploration: Play an experimental move



K-armed Bandit Problem 
► The k-armed bandit, with k arms, each having an unknown, 

possibly different distribution of payoffs/rewards 

► In k-armed bandit problem, each of the k actions has an 
expected or mean reward given that, based on action 
selected is the value of that action ( Action Value):

► Where,

►  t- step or play number

► 𝐴 𝑡 - Action at time t

► 𝑅𝑡 - Reward at time t

► 𝑞∗ ( 𝑎 )– True value (expected reward) of action



Action-value Methods
► Action-value methods are simple methods for estimating the 

values of actions 

► This estimates to make action selection decisions

► q(a) denote the true (actual) value of action a, the true value 
of an action is the mean reward received when that action is 
selected

► The estimated value on the tth time step as Qt(a)

► If by the tth  time step action a has been chosen Nt(a) times 
prior to t, rewards R1, R2, . . . , RNt(a), then its value is 
estimated to be



Action-value Methods



Example 2(May_2024) 10M

► You are playing a slot machine with three arms.

► Each time you pull an arm, you either win $1 or lose $1 
with equal probability. 

► You decide to randomly choose an arm to pull each time. 

► If you play the slot machine 100 times, how much money 
do you expect to win or lose on average?



Example: Clinical Trials 

► There are k treatments for a given disease

► Patients arrive sequentially at the clinic and must be treated 
immediately by one of the treatments

►  It is assumed that response from treatment is immediate 

► So the effectiveness of the treatment of the present patient 
receives is known when the next patient to be treated

► It is not known precisely which one of the treatments is best, but 
one must decide which treatment to give each patient

►  The goal is to cure as many patients as possible

► This may require to give a patient a treatment which is not the 
one that looks best at the present time in order to gain 
information that may be of use to future patients



Types of Action-value Methods 

► Greedy Action Selection Method

► 𝜀-greedy Action Selection Method

► Upper-Confidence-Bound(UCB) Action Selection Method



Greedy Action Selection
► The simplest action selection rule is to select the action with 

highest estimated action value is, called the greedy actions 
selection 

► At step t one of the greedy actions, At
∗, for which 

► Qt(At
∗) = 𝑚𝑎𝑥a Qt(a)

     𝑎𝑟𝑔𝑚𝑎𝑥a f(𝑎) - a value of 𝑎 at which 𝑓(𝑎) takes its maximal value 

► Greedy action selection always exploits current knowledge to 
maximize immediate reward

► It spends no time at all sampling apparently inferior actions to see 
if they might really be better



𝜀-greedy Action Selection Method
► Exploitation is the right thing to do to maximize the expected 

reward on the one step
► But Exploration may produce the greater total reward in the 

long run
► A simple alternative method, 𝜀-greedy action selection method 

behave greedily most of the time
► However, with small probability ε, select the action randomly 

from all the actions with equal probability, independently of 
the action value estimates

► An advantage of these methods is that, as the number of plays 
increases, every action will be sampled an infinite number of 
times, Nt(a) → ∞ for all a, ensure the Qt(a) converge to q(a)



ε-Greedy Methods on the 
10-ArmedTestbed Conceder a set of 2000 randomly generated 

n-armed bandit tasks with n = 10
For each bandit, the action values, q(a), a = 1, . . . 
, 10, were selected according to a normal 
(Gaussian) distribution with mean 0 and variance 1
Figure  shows the performance and behavior of 
various methods as they improve with experience 
over 1000
Steps
Figure compares a greedy method with two 
ε-greedy methods (ε = 0.01 and ε = 0.1)
The upper graph shows the increase in expected 
reward with experience
The greedy method improved slightly faster than 
the other methods at the very beginning, but then 
leveled off at a lower level
It achieved a reward per step of only about 1, 
compared with the best possible of about 1.55 on 
this testbed



ε-Greedy Methods on the 10-ArmedTestbed

The greedy method performs significantly worse in 
the long run because it often gets stuck performing 
suboptimal actions
The ε-greedy methods perform better because they 
continue to explore, and to improve their chances
of recognizing the optimal action
The ε = 0.1 method explores more and finds the 
optimal action earlier, but never selects it more 
than 91% of the time
The ε = 0.01 method improves more slowly, but 
performs better than the ε = 0.1 method on both 
performance measures
It is also possible to reduce ε over time to try to get 
the best of both high and low values



Example:
Consider an example of 10 bandits each 
with their own individual success 
probabilities and ε = 0.1 
Bandit #1 = 10% success rate
Bandit #2 = 50% success rate
Bandit #3 = 60% success rate
Bandit #4 = 80% success rate 
Bandit #5 = 10% success rate
Bandit #6 = 25% success rate
Bandit #7 = 60% success rate
Bandit #8 = 45% success rate
Bandit #9 = 75% success rate 
Bandit #10 = 65% success rate
By training the agent for 10,000 episodes 
per experiment, the average proportion of 
bandits chosen by the agent as a function 
of episode number, is shown in Fig



Example:3
► An agent playing a slot machine with three arms each with 

their own individual success probabilities and ε = 0.4. 
Bandit #1 = 40% success rate, Bandit #2 = 70% success rate 
and Bandit #3 = 80% success rate. Each time agent pull an 
arm, it either reward $1 or -$1. If it play the slot machine 
10000 times, calculate expected cumulative reward.



Comparison Between Greedy and ε-Greedy Methods 

► The advantage of ε-greedy over greedy methods depends 
on the task

► If the reward variance is been larger, 10 instead of 1, it 
takes more exploration to find the optimal action, and 
ε-greedy methods is better relative to the greedy method

► If the reward variances is zero, then the greedy method 
would know the true value of each action after trying it 
once

► In this case the greedy method perform best because it 
would soon find the optimal action and then never explore



The Exploration/Exploitation Dilemma



Example:4 (IT_23_10M)

► Consider a k-armed bandit problem with k = 4 actions, 
denoted 1, 2, 3, and 4.

► Consider applying to this problem a bandit algorithm using ε 
-greedy action selection, sample-average action-value 
estimates, and initial estimates of Q1(a) = 0, for all a. 

► Suppose the initial sequence of actions and rewards is A1 = 
1, R1 =1, A2= 2, R2 = 1, A3 = 2, R3 =2, A4 = 2, R4 = 2, A5 = 3, 
R5 = 0.

► On some of these time steps the ε case may have occurred, 
causing an action to be selected at random.

► On which time steps did this definitely occur? On which time 
steps could this possibly have occurred?



Incremental Implementation
► The action-value methods estimate action values as sample 

averages of observed rewards

► For each action ‘a’, a record of all the rewards that have 
followed the selection of that action needs to be maintained

► Each additional reward following a selection of action ‘a’ 
requires more memory to store it and results in more 
computation required to determine Qt(a)

► Instead of recalculating the sum every time, incrementally 
update the sample average



Cont…
► For some action, let Qk 

denote the estimate for its 
Kth  reward, the average of 
its first k − 1 rewards

► Given this average and a 
Kth reward for the action, 
Rk, then the average of all 
‘k’ rewards can be 
computed by

► This implementation 
requires memory only for 
Qk  & ‘k’, and only the 
small computation for 
each new reward

Expression [Target − OldEstimate] is an error in the estimate. The 
step-size parameter (StepSize) changes from time step to time step



Stationary vs Nonstationary Problem

► In a stochastic processes, a stationary and a nonstationary 
problem refer to the nature of the statistical properties of a 
process over time

► Stationary Problem:

► A stationary Problem has statistical properties (like mean, 
variance, etc) that do not change over time

► Example: Daily temperature deviation from the monthly mean

► Nonstationary Problem:

► In a nonstationary problem, the environment's underlying 
characteristics (statistical properties) change over time

► Example: Stock Market Index Prices, GDP growth



Tracking a Nonstationary Problem
► In a stationary environment, the 

reward distributions for the multi 
bandits arms are constant, so an 
agent can learn over time and use its 
knowledge to make better decisions

► But in a nonstationary environment, 
the reward distributions of the arms 
are not fixed but changed 
unpredictably

► So the optimal action can change and 
the agent needs to adjust its 
behavior accordingly to track the 
best-performing options



Cont…
► The averaging methods discussed 

are appropriate in a stationary 
environment, but not if the 
bandit is changing over time

► As most of the reinforcement 
learning problems are 
nonstationary, weight recent 
rewards more heavily than 
long-past ones by using a constant 
step-size parameter

► where the step-size parameter α 
∈ (0, 1] is constant

This results in Qk+1 being a weighted average of 
past rewards and the initial estimate Q1 



Optimistic Initial Values

► Epsilon-Greedy Algorithms are dependent on the initial 
action-value estimates Q0  and are biased by their initial 
estimates

► Optimistic Initial Values are used to encourage exploration in 
the early stages of learning

► In many RL algorithms, the agent learns by balancing 
exploration and exploitation 

► Without exploration, an agent might get stuck in suboptimal 
policies and never discover better alternatives

► By assigning optimistic initial values to actions or states, the 
agent is initially “overestimating” the reward it will get from 
those actions

► This makes the agent more likely to explore less-visited or 
uncertain actions in the early stages of training



Cont… ► Figure shows the performance on the 
10-armed bandit testbed of a greedy 
method using Q0 = +5, for all α and the 
ε-greedy method with Q0 =0

► Both methods used a constant step-size 
parameter, α

► Initially, the optimistic method 
performs worse because it explores 
more, but eventually it performs better 
because its exploration decreases with 
time

► This technique for encouraging 
exploration effective on stationary 
problems, but it is not well suited to 
nonstationary problems

► The agent is more “optimistic” 
about what it might find, leading 
it to explore different actions 
before settling on an optimal 
policy



Upper Confidence Bound (UCB) action selection
► Simple strategies like ε-greedy choose either to explore or 

exploit based on a fixed probability, ε = 0.4

► This strategy can lead to issues:

► Over-exploration: It might waste too many pulls on less 
promising arms.

► Under-exploration: If the exploration rate is too low, the agent 
might not discover better arms that it has not pulled enough to 
evaluate properly.

► The Upper Confidence Bound (UCB) algorithm address the 
shortcomings of ε-greedy methods

► It uses uncertainty in the action-value estimates for balancing 
exploration and exploitation

      



UCB's Approach
► UCB dynamically adjusts between 

exploration and exploitation based on 
how many times each arm has been 
pulled and the uncertainty around its 
performance

► It is guided by the principle that arms 
that have been pulled fewer times should 
be explored more

► But as the agent gains more data or ‘t’ 
approaches larger value, it can exploit 
the arms that consistently perform well

► In the UCB, the square-root term is a 
measure of the uncertainty or variance in 
the estimate of a’s value

c > 0 controls the  degree of exploration



Cont…
► Each time a is selected the uncertainty 

is reduced as Nt(a) increases

► But each time an action a is selected 
‘t’ is increased; the uncertainty 
estimate is increased

► The use of the natural logarithm means 
that the increase gets smaller over 
time

► As time goes by it will be a longer 
wait, and thus a lower selection 
frequency

► So UCB explores more to systematically 
reduce uncertainty but its exploration 
reduces over time



Example:4

► After 12 iterations of the UCB 1 algorithm applied on a 
4-arm bandit problem, we have n1 = 3, n2 = 4, n3 = 3, n4 
= 2 and Q12(1) = 0.55, Q12(2) = 0.63, Q12(3) = 0.61, 
Q12(4) = 0.40. Which arm should be played next?



Gradient Bandits
► Unlike value-based methods, which learn a value function for 

states or actions, Gradient Bandits directly optimize the 
parameters, a numerical preference Ht(a) for each action ‘a’

►  It’s particularly useful in environments where the agent needs 
to learn a probabilistic policy rather than a deterministic one

► In Gradient Bandits, the policy is represented as a probabilistic 
model, πt(a) for the probability of taking action ‘a’ at time ‘t’, 
according to a soft-max distribution as: 



Cont…
► Gradient Bandits uses the gradient ascent technique to update the 

parameters Ht(a)

►    is the average of all the rewards up through and including time ‘t’ 

► The      term serves as a baseline with which the reward is 
compared

► If the reward is higher than the baseline, then the probability of 
taking At in the future is increased

► If the reward is below baseline, then probability is decreased

► The policy parameters are updated based on the reward feedback 
from the environment



Cont…
► Figure  shows results with the 

gradient-bandit algorithm on a variant of 
the 10-armed testbed, using normal 
distribution with a mean of +4 and unit 
variance 

► This shifting up of all the rewards has 
absolutely no affect on the 
gradient-bandit algorithm because of 
the reward baseline term, which 
instantaneously adapts to the new level

► But if the baseline were omitted, that 
is, if    was taken to be constant zero, 
then performance would be significantly 
degraded, as shown in the figure

Gradient-bandit algorithms estimate 
not action values, but action 
preferences, and favor the more 
preferred actions in a graded, 
probabilistic manner using a 
soft-max distribution



Derivation of gradient-bandit algorithm








