
Multi-Arm Bandits
► Reinforcement Learning(RL) uses training

information that ‘Evaluate’ the actions

► Evaluative feedback indicates ‘How good the
action taken was’

► The multi-armed bandit problem is a classic
reinforcement learning example

► The multi-armed bandit, a slot machine with
n arms (bandits) with each arm having its own
probability distribution of success

► Pulling any one of the arms gives a stochastic
reward of either R=+1 for success, or R=0 for
failure

Probability Distribution
► It is a listing of the probabilities

of all the possible outcomes that
could occur if the experiment
was done

► Discrete Distribution: Random
Variable can take only limited
number of values

► Ex: No. of heads in two tosses

► No. of dots on Dies

► Continuous Distribution: Random
Variable can take any value

► Ex: Height of students in the
class

Discrete Distribution
► Random Variable can take only

limited number of values

► Ex: No. of heads in two tosses

► No. of dots on Dies

► Tossing a coin three times:
S = {𝐻𝐻𝐻, 𝐻𝐻𝑇, 𝐻𝑇𝐻, 𝐻𝑇𝑇,

 𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇}

► Let X represents “No. of heads”

Binomial Distribution
► There are certain phenomena in nature which can be

identified as Bernoulli’s processes, in which:
► There is a fixed number of n trials carried out

► Each trial has only two possible outcomes say success or
failure, true or false etc.

► Probability of occurrence of any outcome remains same
over successive trials

► Trials are statistically independent

► Binomial distribution is a discrete PD which expresses
the probability of one set of alternatives – success (p)
and failure (q)

►
► n = no. of trials undertaken

► r = no. of successes desired

► p = probability of success

► q = probability of failure

Poisson Distribution
► When there is a large number of

trials, but a small probability of
success, binomial calculation
becomes impractical

► If λ = mean no. of occurrences of an
event per unit interval of
time/space, then probability that it
will occur exactly ‘x’ times is given
by

Normal Distribution
► It is a continuous PD i.e. random

variable can take on any value within a
given range. Ex: Height, Weight, Marks
etc.

► Developed by Karl Gauss, so also called
Gaussian Distribution

► It is symmetrical, unimodal (one peak)

► X axis represents random variable like
height, weight etc.

► Y axis represents its probability density
function

► Mean = µ, SD = σ

MAB Interactive Demo

https://perso.crans.org/besson/phd/MAB_interactive_demo/

Cont...

► MAB deal with ‘Exploitation & Exploration’ of the core ideas in
RL

► For example:

► Among the various slot machines, which slot machine should
selected and lower the lever?

► How can to make the best return?

► In the full reinforcement learning problem, a MAB algorithm is
always used to optimizes the solution

Multi Bandit Problem
► Multi bandit problems are problems in the area of sequential

selection of experiments

► At each stage there are k possible actions or choices of experiment

► An information or a reward is resulted based on the choice of action

► There must strike a balance between gaining rewards and gaining
information to maximize the present value of the rewards received

► That leads to exploitation/exploration dilemma

► MAB deal with ‘Exploitation & Exploration’ of the core ideas in RL

► For example:

► Among the various slot machines, which slot machine should selected
and lower the lever?

► How can to make the best return?

The Exploration/Exploitation Dilemma
► Decision-making involves a

fundamental choice of:

► Exploitation: Make the best
decision given current
information

► Exploration: Gather more
information

► The best long-term strategy may
involve short-term sacrifices to
gather enough information to
make the best overall decisions

Examples
►Restaurant Selection
► Exploitation: Go to your favorite restaurant
► Exploration: Try a new restaurant

►Online Banner Advertisements
► Exploitation: Show the most successful advert
► Exploration: Show a different advert
►Oil Drilling
► Exploitation: Drill at the best known location
► Exploration: Drill at a new location
►Game Playing
► Exploitation: Play the move you believe is best
► Exploration: Play an experimental move

K-armed Bandit Problem
► The k-armed bandit, with k arms, each having an unknown,

possibly different distribution of payoffs/rewards

► In k-armed bandit problem, each of the k actions has an
expected or mean reward given that, based on action
selected is the value of that action (Action Value):

► Where,

► t- step or play number

► 𝐴 𝑡 - Action at time t

► 𝑅𝑡 - Reward at time t

► 𝑞∗ (𝑎)– True value (expected reward) of action

Action-value Methods
► Action-value methods are simple methods for estimating the

values of actions

► This estimates to make action selection decisions

► q(a) denote the true (actual) value of action a, the true value
of an action is the mean reward received when that action is
selected

► The estimated value on the tth time step as Qt(a)

► If by the tth time step action a has been chosen Nt(a) times
prior to t, rewards R1, R2, . . . , RNt(a), then its value is
estimated to be

Action-value Methods

Example 2(May_2024) 10M

► You are playing a slot machine with three arms.

► Each time you pull an arm, you either win $1 or lose $1
with equal probability.

► You decide to randomly choose an arm to pull each time.

► If you play the slot machine 100 times, how much money
do you expect to win or lose on average?

Example: Clinical Trials

► There are k treatments for a given disease

► Patients arrive sequentially at the clinic and must be treated
immediately by one of the treatments

► It is assumed that response from treatment is immediate

► So the effectiveness of the treatment of the present patient
receives is known when the next patient to be treated

► It is not known precisely which one of the treatments is best, but
one must decide which treatment to give each patient

► The goal is to cure as many patients as possible

► This may require to give a patient a treatment which is not the
one that looks best at the present time in order to gain
information that may be of use to future patients

Types of Action-value Methods

► Greedy Action Selection Method

► 𝜀-greedy Action Selection Method

► Upper-Confidence-Bound(UCB) Action Selection Method

Greedy Action Selection
► The simplest action selection rule is to select the action with

highest estimated action value is, called the greedy actions
selection

► At step t one of the greedy actions, At
∗, for which

► Qt(At
∗) = 𝑚𝑎𝑥a Qt(a)

 𝑎𝑟𝑔𝑚𝑎𝑥a f(𝑎) - a value of 𝑎 at which 𝑓(𝑎) takes its maximal value

► Greedy action selection always exploits current knowledge to
maximize immediate reward

► It spends no time at all sampling apparently inferior actions to see
if they might really be better

𝜀-greedy Action Selection Method
► Exploitation is the right thing to do to maximize the expected

reward on the one step
► But Exploration may produce the greater total reward in the

long run
► A simple alternative method, 𝜀-greedy action selection method

behave greedily most of the time
► However, with small probability ε, select the action randomly

from all the actions with equal probability, independently of
the action value estimates

► An advantage of these methods is that, as the number of plays
increases, every action will be sampled an infinite number of
times, Nt(a) → ∞ for all a, ensure the Qt(a) converge to q(a)

ε-Greedy Methods on the
10-ArmedTestbed Conceder a set of 2000 randomly generated

n-armed bandit tasks with n = 10
For each bandit, the action values, q(a), a = 1, . . .
, 10, were selected according to a normal
(Gaussian) distribution with mean 0 and variance 1
Figure shows the performance and behavior of
various methods as they improve with experience
over 1000
Steps
Figure compares a greedy method with two
ε-greedy methods (ε = 0.01 and ε = 0.1)
The upper graph shows the increase in expected
reward with experience
The greedy method improved slightly faster than
the other methods at the very beginning, but then
leveled off at a lower level
It achieved a reward per step of only about 1,
compared with the best possible of about 1.55 on
this testbed

ε-Greedy Methods on the 10-ArmedTestbed

The greedy method performs significantly worse in
the long run because it often gets stuck performing
suboptimal actions
The ε-greedy methods perform better because they
continue to explore, and to improve their chances
of recognizing the optimal action
The ε = 0.1 method explores more and finds the
optimal action earlier, but never selects it more
than 91% of the time
The ε = 0.01 method improves more slowly, but
performs better than the ε = 0.1 method on both
performance measures
It is also possible to reduce ε over time to try to get
the best of both high and low values

Example:
Consider an example of 10 bandits each
with their own individual success
probabilities and ε = 0.1
Bandit #1 = 10% success rate
Bandit #2 = 50% success rate
Bandit #3 = 60% success rate
Bandit #4 = 80% success rate
Bandit #5 = 10% success rate
Bandit #6 = 25% success rate
Bandit #7 = 60% success rate
Bandit #8 = 45% success rate
Bandit #9 = 75% success rate
Bandit #10 = 65% success rate
By training the agent for 10,000 episodes
per experiment, the average proportion of
bandits chosen by the agent as a function
of episode number, is shown in Fig

Example:3
► An agent playing a slot machine with three arms each with

their own individual success probabilities and ε = 0.4.
Bandit #1 = 40% success rate, Bandit #2 = 70% success rate
and Bandit #3 = 80% success rate. Each time agent pull an
arm, it either reward $1 or -$1. If it play the slot machine
10000 times, calculate expected cumulative reward.

Comparison Between Greedy and ε-Greedy Methods

► The advantage of ε-greedy over greedy methods depends
on the task

► If the reward variance is been larger, 10 instead of 1, it
takes more exploration to find the optimal action, and
ε-greedy methods is better relative to the greedy method

► If the reward variances is zero, then the greedy method
would know the true value of each action after trying it
once

► In this case the greedy method perform best because it
would soon find the optimal action and then never explore

The Exploration/Exploitation Dilemma

Example:4 (IT_23_10M)

► Consider a k-armed bandit problem with k = 4 actions,
denoted 1, 2, 3, and 4.

► Consider applying to this problem a bandit algorithm using ε
-greedy action selection, sample-average action-value
estimates, and initial estimates of Q1(a) = 0, for all a.

► Suppose the initial sequence of actions and rewards is A1 =
1, R1 =1, A2= 2, R2 = 1, A3 = 2, R3 =2, A4 = 2, R4 = 2, A5 = 3,
R5 = 0.

► On some of these time steps the ε case may have occurred,
causing an action to be selected at random.

► On which time steps did this definitely occur? On which time
steps could this possibly have occurred?

Incremental Implementation
► The action-value methods estimate action values as sample

averages of observed rewards

► For each action ‘a’, a record of all the rewards that have
followed the selection of that action needs to be maintained

► Each additional reward following a selection of action ‘a’
requires more memory to store it and results in more
computation required to determine Qt(a)

► Instead of recalculating the sum every time, incrementally
update the sample average

Cont…
► For some action, let Qk

denote the estimate for its
Kth reward, the average of
its first k − 1 rewards

► Given this average and a
Kth reward for the action,
Rk, then the average of all
‘k’ rewards can be
computed by

► This implementation
requires memory only for
Qk & ‘k’, and only the
small computation for
each new reward

Expression [Target − OldEstimate] is an error in the estimate. The
step-size parameter (StepSize) changes from time step to time step

Stationary vs Nonstationary Problem

► In a stochastic processes, a stationary and a nonstationary
problem refer to the nature of the statistical properties of a
process over time

► Stationary Problem:

► A stationary Problem has statistical properties (like mean,
variance, etc) that do not change over time

► Example: Daily temperature deviation from the monthly mean

► Nonstationary Problem:

► In a nonstationary problem, the environment's underlying
characteristics (statistical properties) change over time

► Example: Stock Market Index Prices, GDP growth

Tracking a Nonstationary Problem
► In a stationary environment, the

reward distributions for the multi
bandits arms are constant, so an
agent can learn over time and use its
knowledge to make better decisions

► But in a nonstationary environment,
the reward distributions of the arms
are not fixed but changed
unpredictably

► So the optimal action can change and
the agent needs to adjust its
behavior accordingly to track the
best-performing options

Cont…
► The averaging methods discussed

are appropriate in a stationary
environment, but not if the
bandit is changing over time

► As most of the reinforcement
learning problems are
nonstationary, weight recent
rewards more heavily than
long-past ones by using a constant
step-size parameter

► where the step-size parameter α
∈ (0, 1] is constant

This results in Qk+1 being a weighted average of
past rewards and the initial estimate Q1

Optimistic Initial Values

► Epsilon-Greedy Algorithms are dependent on the initial
action-value estimates Q0 and are biased by their initial
estimates

► Optimistic Initial Values are used to encourage exploration in
the early stages of learning

► In many RL algorithms, the agent learns by balancing
exploration and exploitation

► Without exploration, an agent might get stuck in suboptimal
policies and never discover better alternatives

► By assigning optimistic initial values to actions or states, the
agent is initially “overestimating” the reward it will get from
those actions

► This makes the agent more likely to explore less-visited or
uncertain actions in the early stages of training

Cont… ► Figure shows the performance on the
10-armed bandit testbed of a greedy
method using Q0 = +5, for all α and the
ε-greedy method with Q0 =0

► Both methods used a constant step-size
parameter, α

► Initially, the optimistic method
performs worse because it explores
more, but eventually it performs better
because its exploration decreases with
time

► This technique for encouraging
exploration effective on stationary
problems, but it is not well suited to
nonstationary problems

► The agent is more “optimistic”
about what it might find, leading
it to explore different actions
before settling on an optimal
policy

Upper Confidence Bound (UCB) action selection
► Simple strategies like ε-greedy choose either to explore or

exploit based on a fixed probability, ε = 0.4

► This strategy can lead to issues:

► Over-exploration: It might waste too many pulls on less
promising arms.

► Under-exploration: If the exploration rate is too low, the agent
might not discover better arms that it has not pulled enough to
evaluate properly.

► The Upper Confidence Bound (UCB) algorithm address the
shortcomings of ε-greedy methods

► It uses uncertainty in the action-value estimates for balancing
exploration and exploitation

UCB's Approach
► UCB dynamically adjusts between

exploration and exploitation based on
how many times each arm has been
pulled and the uncertainty around its
performance

► It is guided by the principle that arms
that have been pulled fewer times should
be explored more

► But as the agent gains more data or ‘t’
approaches larger value, it can exploit
the arms that consistently perform well

► In the UCB, the square-root term is a
measure of the uncertainty or variance in
the estimate of a’s value

c > 0 controls the degree of exploration

Cont…
► Each time a is selected the uncertainty

is reduced as Nt(a) increases

► But each time an action a is selected
‘t’ is increased; the uncertainty
estimate is increased

► The use of the natural logarithm means
that the increase gets smaller over
time

► As time goes by it will be a longer
wait, and thus a lower selection
frequency

► So UCB explores more to systematically
reduce uncertainty but its exploration
reduces over time

Example:4

► After 12 iterations of the UCB 1 algorithm applied on a
4-arm bandit problem, we have n1 = 3, n2 = 4, n3 = 3, n4
= 2 and Q12(1) = 0.55, Q12(2) = 0.63, Q12(3) = 0.61,
Q12(4) = 0.40. Which arm should be played next?

Gradient Bandits
► Unlike value-based methods, which learn a value function for

states or actions, Gradient Bandits directly optimize the
parameters, a numerical preference Ht(a) for each action ‘a’

► It’s particularly useful in environments where the agent needs
to learn a probabilistic policy rather than a deterministic one

► In Gradient Bandits, the policy is represented as a probabilistic
model, πt(a) for the probability of taking action ‘a’ at time ‘t’,
according to a soft-max distribution as:

Cont…
► Gradient Bandits uses the gradient ascent technique to update the

parameters Ht(a)

► is the average of all the rewards up through and including time ‘t’

► The term serves as a baseline with which the reward is
compared

► If the reward is higher than the baseline, then the probability of
taking At in the future is increased

► If the reward is below baseline, then probability is decreased

► The policy parameters are updated based on the reward feedback
from the environment

Cont…
► Figure shows results with the

gradient-bandit algorithm on a variant of
the 10-armed testbed, using normal
distribution with a mean of +4 and unit
variance

► This shifting up of all the rewards has
absolutely no affect on the
gradient-bandit algorithm because of
the reward baseline term, which
instantaneously adapts to the new level

► But if the baseline were omitted, that
is, if was taken to be constant zero,
then performance would be significantly
degraded, as shown in the figure

Gradient-bandit algorithms estimate
not action values, but action
preferences, and favor the more
preferred actions in a graded,
probabilistic manner using a
soft-max distribution

Derivation of gradient-bandit algorithm

