Markov Decision Processes

As in all of artificial intelligence, there is a tension between breadth
of applicability and mathematical tractability

This chapter introduce this tension and discuss some of the trade-offs
and challenges that it implies

A Markov decision process (MDP) is a stochastic decision making
process that uses a mathematical framework to model the decision
making of a dynamic system

It is used in scenarios where the results are either random or
controlled by a decision maker, which makes sequential decisions over
time

MDPs evaluate, which actions the decision maker should take,
considering the current state and environment of the system

MDPs rely on variables such as the environment, agent’s actions and
rewards to decide the system’s next optimal action

The Agent-Environment Interface

The reinforcement learning problem is
framing of the problem of learning from

interaction to achieve a goal Agent

The learner and decision-maker is called the

agent state| |reward action
S| (R

The thing it interacts with, comprising [R A

evel.'ything outside the agent, is called the ‘ 5| Environment

environment o

These interact continually, the agent The agent- envimn>\wenti

selecting actions and the environment

responding to those actions and presenting
new situations to the agent rewards, special
numerical values that the agent tries to
maximize over time

The Agent-Environment Interface

Markov decision processes describe a fully
observable environment for reinforcement

learning
e . Agent
A complete specification of an environment
defines a task state| |reward o
The agent and environment interact at each of a % | |k A,
sequence of discrete time steps, t =0, 1, 2, 3, . , Raf _
5. Environment

At each time step t, the agent receives some
representation of the environment’s state, St The agent- environ>\wenti
€ S, where S is the set of possible states and on

that basis selects an action, At € A(St), where
A(St) is the set of actions available in state St

One time step later, due to its action, the agent
receives a numerical reward, Rt+1 € R, and
finds itself in a new state, St+1

Cont...

At each time step, the agent implements a mapping from states
to probabilities of selecting each possible action

This mapping is called the agent’s policy and is denoted mt
where mt(a|s) is the probability that At =a if St =s

Reinforcement learning methods specify how the agent changes
its policy as a result of its experience

The agent’s goal is to maximize the total amount of reward it
receives over the long run

Actions can be any decisions to learn how to make, and the
states be anything that might be useful in making them

The boundary between agent and environment is not the same
as the physical boundary of an agent (robot’s or animal’s body)

Cont...

- For example, the motors and mechanical linkages of a robot an
sensing hardware should be considered parts of the environmen
rather than parts of the agent

- Rewards, too, are computed inside the physical bodies of natural a
artificial learning systems, but are considered external to the agent

- The reinforcement learning framework is a problem of goal-directed
learning from interaction that can be achieved through three signals
passing back and forth between an agent and its environment:

- Signal to represent the choices made by the agent (the actions)
- Signal to represent the basis on which the choices are made (the states)
- Signal to define the agent’s goal (the rewards)

Goals and Rewards

- In reinforcement learning, the purpose or goal of the
agent is formalized in terms of a special reward signal
passing from the environment to the agent

- At each time step, the reward is a simple number, Rt € R

- The agent’s goal is to maximize the total amount of
reward it receives, maximizing not immediate reward, but
cumulative reward in the long run

- So the goals and purposes can be the maximization of the
expected value of the cumulative sum of a received scalar
signal (called reward)

Goals and Rewards

- The use of a reward signal to formalize the idea of a goal

- The reward signal is not the place to impart to the agent
prior knowledge about how to achieve but what to do

- For example, a chess-playing agent should be rewarded
only for actually winning, not for achieving sub goals such
taking its opponent’s pieces or gaining control of the
center of the board

- The reward signal is the way of communicating to the
agent what is to achieve, not how to achieved

Returns

- The agent’s goal is to maximize the cumulative reward it
receives in the long run

- |If the sequence of rewards received after time step t is
denoted Rt+1, Rt+2, Rt+3, . . to maximize the expected
return, where the return Gt is defined as function of the
reward sequence

- The return is the sum of the rewards: G, = Ryy; + Rjio+ Riyz +---+ Ry

\

where T is a final time step

- At T the agent- environment interaction breaks naturally
into subsequences, which we call episodes such as plays of
a game, trips through a maze, or any repeated
interactions

Cont... Gtth+1+Rt+2+Rt+3+”'+RT

At T the agent- environment interaction breaks naturally into
subsequences, which we call episodes such as plays of a game, tri
through a maze, or any repeated interactions

Each episode ends in a special state called the terminal state, follo
by a reset to a standard starting state

Tasks with episodes are called episodic tasks

In episodic tasks it is required to distinguish the set of all non terminal
states, denoted S, from the set of all states plus the terminal state,
denoted S+

In many cases the agent-environment interaction does not break
naturally into identifiable episodes, but goes on continually with

- For example, an application to a robot with a long life span, call
continuing tasks

Cont...

- For example, an application to a robot with a long life span,
called continuing tasks

- The return formulation is problematic for continuing tasks
because the final time step would be T = «, and the return,
could easily be infinite

- The agent tries to select actions so that the sum of the
discounted rewards it receives over the future is maximized

- |t chooses At to maximize the expected discounted return:

o0
G: = Riy1 + YRiya + YV’ Rega + -+ = Z’YkRHkH,
k=0

where vy is a parameter, 0 < y < 1, called the discount rate

Cont...

- The discount rate determines the present value of future
rewards: a reward received k time steps in the future is worth
only y*' times what it would be worth if it were received
immediately

- If y <1, the infinite sum has a finite value as long as the
reward sequence {Rk} is bounded

- If y =0, the agent is “myopic” in being concerned only with
maximizing immediate rewards: its objective in this case is to
learn how to choose At so as to maximize only Rt+1

- |If each of the agent’s actions happened to influence only the
immediate reward, not future rewards as well, then a myopic
agent could maximize by separately maximizing each
immediate reward

Cont...

- But in general, acting to maximize immediate reward can
reduce access to future rewards so that the return may
actually be reduced

- As y approaches 1, the objective takes future rewards into
account more strongly

The Markov Property

The property of environments and their state signals is called
the Markov property

The state, given by some preprocessing system, is part of the
environment

The state signal should include immediate sensations, such as
sensory measurements, but it can contain much more
information

State representations can be highly processed versions of
original sensations, or they can be complex structures built up
over time from the sequence of sensations

For example: Move eyes over a scene, with only a tiny spot
corresponding to detail at any one time, build up a rich and
detailed representation of a scene

Cont...

- In this case the state is constructed and maintained on the
basis of immediate sensations together with the previous
state or some other memory of past sensations

- The state signal should not be expected to inform the
agent of everything about the environment, or everything
that would be useful to it in making decisions

- For example: If the agent is a paramedic called to a road
accident, it is not expect that it know immediately the
internal injuries of an unconscious victim

- In this case there is hidden state information in the
environment, and that information would be useful if the
agent knew it, but the agent cannot know it because it
has never received any relevant sensation

Cont...

- ldeally, a state sighal requires to summarizes past
sensations compactly so that all relevant information is
retained

- A state signal that succeeds in retaining all relevant
information is said to be Markov, or to have the Markov
property

- For example, a checkers position—the current
configuration of all the pieces on the board, serve as a
Markov state because it summarizes everything important
about the complete sequence of positions

- In the most general, causal case the response may depend
on everything that has happened earlier

Cont...

In this case the dynamics can be defined only by
specifying the complete probability distribution as:

Y

Pr{lzt+l e £ St+l T S’ | SO) AO) Rl7 Y St—l’ At—l: R’t’ St’ At}

for all r, s, and all possible values of the past events: SO,
AO, R1, ..., St-1, At-1, Rt, St, At

- |If the state sighal has the Markov property, then the
environment’s response at t + 1 depends only on the state
and action representations at t, in which case the
environment’s dynamics can be defined as:

p(S’,TlS, a’) - Pr{Rt-i-l ==l St-l-l p— S’ | Sta At}
forallr, s, St, and At

Cont...

- If an environment has the Markov property, then its
one-step dynamics enable to predict the next state and
expected next reward given the current state and action

- Markov states provide the best possible basis for choosing
actions

- The Markov property is important in reinforcement
learning because decisions and values are assumed to be a

function only of the current state

Bioreactor

- Suppose reinforcement learning is being applied to determine
moment-by-moment temperatures and stirring rates for a
bioreactor (a large vat of nutrients and bacteria used to
produce useful chemicals)

- The target temperatures and target stirring rates that are
passed to lower-level control systems that, in turn, directly
activate heating elements and motors to attain the targets

- The thermocouple and other sensors used for readings of
temperatures, stirring rates, Chemical concentration, Nutrient
levels, Bacterial population density and Target chemical

Find possible state, action and reward

Bioreactor

-~ Possible state, action and reward

- Here each state is a list, or vector, of sensor readings and
symbolic inputs

- Each action is a vector consisting of a target temperature and a
stirring rate

- The rewards might be moment-by-moment measures of the rate
at which the useful chemical is produced by the bioreactor and
are always single numbers

Pick-and-Place Robot

- Consider using reinforcement learning to control the
motion of a robot arm in a repetitive pick-and-place task

- |f we want to learn movements that are fast and smooth,
the learning agent will have to control the motors directly
and have low-latency information about the current
positions and velocities of the mechanical linkages

- Find possible state, action and reward

Pick-and-Place Robot

- The possible state, action and reward

- The states be the latest readings of joint angles and
velocities

- The actions be the voltages applied to each motor at each
joint

- The reward might be +1 for each object successfully
picked up and placed

- Negative reward for jerkiness

- Penalty for failure to pick/place

Markov Decision Processes

- A state signal that succeeds in retaining all relevant
information is said to be Markov, or to have the Markov
property

- Areinforcement learning task that satisfies the Markov
property is called a Markov decision process, or MDP. If the
state and action spaces are finite, then it is called a finite
Markov decision process

- A particular finite MDP is defined by its state and action
sets and by the one-step dynamics of the environment

- Given any state and action s and a, the probability of each
possible pair of next state and reward, s, r, is denoted

p(s',r|s,a) = Pr{Se1=5, Rey1 =1 | Si=3, Ai=a}-

Cont...

- The expected rewards for state-action pairs,
r(s,a) = E[Ry1 | Si=s,Ar=al = Zrzp(s’,ﬂs,a)

reR s'eS

- The state-transition probabilities,

p(s'|s,a) = Pr{Si1=5"| S;=s,A;=a} = Zp(s’,rls, a),

rcR

- The expected rewards for state-action-next-state triples

ZrefR rp(s’,r|s,a)

r(s,a,8") = E[Ryy | Si=s,Ai=a, Sy = '] = oidlod

Example: Recycling Robot MDP

- A mobile robot has the job of collecting empty soda cans in
an office environment

- It has sensors for detecting cans, and an arm and gripper that
can pick them up and place them in an onboard bin

- |t runs on a rechargeable battery

— The robot’s control system has components for interpreting
sensory information, for navigating, and for controlling the
arm and gripper

- High-level decisions about how to search for cans are made
by a reinforcement learning agent based on the current
charge level of the battery

Cont...

- This agent has to decide whether the robot should:
- (1) actively search for a can for a certain period of time

- (2) remain stationary and wait for someone to bring it a can
- (3) head back to its home base to recharge its battery
~ Suppose the environment works as follows

- The best way to find cans is to actively search for them, but
this runs down the robot’s battery, whereas waiting does not

-~ Whenever the robot is searching, the possibility exists that its
battery will become depleted

- The agent makes its decisions as a function of the energy
level of the battery

- It can distinguish two levels, high and low

Cont...

- The state set is S = {high, low}

- The possible decisions—the agent’s actions— wait, search,
and recharge

- The agent’s action sets are:
- A(high) = {search, wait}
- A(low) = {search, wait, recharge}

- If the energy level is high, then active search can be
completed without risk of depleting the battery

- A period of searching that begins with a high energy level
leaves the energy level high with probability a and
reduces it to low with probability 1 - a

Cont...

- A period of searching undertaken when the energy level is
low leaves it low with probability B and depletes the
battery with probability 1 - B

- In this case the robot must be rescued, and the battery is
then recharged back to high

- Each can collected by the robot counts as a unit reward,
whereas a reward of -3 results whenever the robot has to
be rescued

- Let ‘r’'search and ‘r’wait, with ‘r’search > ‘r’wait,
respectively denote the expected number of cans the
robot will collect (and hence the expected reward) while
searching and while waiting

Transition Graph

- A transition graph is a useful way to summarize the dynamics
of a finite MDP

~ There are two kinds of nodes: state nodes and action nodes

s s a p(s'|s,a) | r(s,a,s’)
high high search Q Toearch
high low search l -« Tastich
low high search 1-8 -3

low 1low search B
high high wait 1 Twait
high low wait 0 Tenit

low high wait 0 Tvait

low low wait 1 Teait

low high recharge |1 0

low 1low recharge | (0 &, Tasarch

Value Functions

- Functions of states (or of state-action pairs) that estimate
how good it is for the agent to be in a given state

- The value of a state is the expected return starting from that
state; depends on the agent’s policy

- The value of a state ‘s’ under a policy ‘n’, denoted Vmi(s), is
the expected return when starting in ‘s’ and following ‘m’
thereafter

ngb]

vx(8) = Ew[Gt | St=3] = Ex [Z ’Yth+k+1

k=0

Bellman Equation for a Policy

St =S]

Er| Ry + Z’)’th+k+2
k=0

vr(s) = IE,,[Q | Se=s]
= K, Z’YkRHkH

L k=0

St=8]

= Z w(als) Z Zp(s’, r|s,a) |7 +VE; [Z V*Ritisa

k=0

= 3" w(als) X p(s'rls, @) [r + yu(s)]
a s'r

Sty1= 3']]

Cont...

- Bellman Equation expresses a relationship between the
value of a state and the values of its successor states

- This is a set of linear equations, one for each state

- This reduces the problem of finding the optimal state
sequence and action to a graph search:

(a) s (b) sa
forv” r

Action-Value Functions

- The value of taking an action ‘a’ in state ‘s’ under policy ‘m’
is the expected return, denoted by QO “ (s, a),starting from that
state, taking that action and following ‘m’:

Action-value function for policyr :

Q"(sa)= Eﬂ:{Rtl S =S & =a}= En{kZ:Vk’}+k+1 | S =S8& za}
~0

Note that the value of the terminal state, if any, is always zero

Optimal Value Functions

- For finite MDPs, policies can be partially ordered:
7z=>n' ifandonlyif V*(s) > V" (s) for all

- There is always at least one (and possibly many) policy that is better t
equal to all the others. This is an optimal policy, denoted as ‘m*’

- Optimal policies share the same optimal state-value function:
Vi(s) = maxV”(s) forall seS
- Optimal policies also share the samne optimal action-value function:
Q (s a)= mﬂaxQ”(s a) for all s eSanda € A(9)

~ This is the expected return for taking action a in state s and thereafter
following an optimal policy

Bellman Optimality Equation for V*

- The value of a state under an optimal policy must equal the expecte
for the best action from that state:

V*(s) = maxQ” (sa)

acA(s)

— maXE rt+1 + yV*(S+1)|St — Sat :a}

acA(s)

= max>" Ry [Re, + Vv (s)]
~ V*is the unique solJioiYoF this system of nonlinear equations

- The optimal action is again found through the maximization process:

Q' (s,a)=E {1 +7 n;axQ* (St+1:a')|$ = S &, :a}

=> R |Re +y maxQ(s.an) |

Q* is the unique solution of this system of nonlinear equations.

Solving the Bellman Optimality Equation
- Finding an optimal policy by solving the Bellman Optimality
Equation requires the following:
- accurate knowledge of environment dynamics;
- we have enough space an time to do the computation;
- the Markov Property

-~ How much space and time do we need?

- polynomial in number of states (via dynamic programming
methods);

- BUT, number of states is often huge (e.g., backgammon has
about 10**20 states)

- We usually have to settle for approximations

- Many RL methods can be understood as approximately solvin
the Bellman Optimality Equation

Example: 6

|

Consider the Markov Decision Process
(MDP) with discount factor y = 0.5

Upper case letters A, B, C represent
states; arcs represent state transitions;
lower case letters ab, ba, bc, ca, cb
represent actions; signed integers
represent rewards; and fractions
represent transition probabilities

Consider the uniform random policy n
(s,a) that takes all actions from state ‘s
with equal probability

The initial value function of V1(A) =
V1(B) = V1(C) =2

Apply two iteration of iterative policy
evaluation to compute a new value
function V3(s)

)

- The initial value function of V1(A) = V1(B) = V1(C) =2

V(9= asa)> PL[R: + 7V ()]

Example: 7

- Consider an MDP with three states,
denoted as A, B, and C, arranged in a
loop. The transitions and actions are as
follows: In each state, there are two
possible actions: "Moves” and “Stays."
The probability of stay in same state is
0.2 and probability of move Ato B, B to
Cand CtoAis 0.8. Areward of 1 is
received when the agent takes the
"Moves” action in state C. All other
transitions result in a reward of 0.
Assume the agent starts in state A,
discount factor (y) = 0.9 and learning
rate (a) = 1

02

