
Markov Decision Processes
► As in all of artificial intelligence, there is a tension between breadth 

of applicability and mathematical tractability

► This chapter introduce this tension and discuss some of the trade-offs 
and challenges that it implies

► A Markov decision process (MDP) is a stochastic decision making 
process that uses a mathematical framework to model the decision 
making of a dynamic system

► It is used in scenarios where the results are either random or 
controlled by a decision maker, which makes sequential decisions over 
time

► MDPs evaluate, which actions the decision maker should take, 
considering the current state and environment of the system

► MDPs rely on variables such as the environment, agent’s actions and 
rewards to decide the system’s next optimal action



The Agent–Environment Interface
► The reinforcement learning problem is 

framing of the problem of learning from 
interaction to achieve a goal

► The learner and decision-maker is called the 
agent

► The thing it interacts with, comprising 
everything outside the agent, is called the 
environment

► These interact continually, the agent 
selecting actions and the environment 
responding to those actions and presenting 
new situations to the agent rewards, special 
numerical values that the agent tries to 
maximize over time

The agent– environment interaction



The Agent–Environment Interface
► Markov decision processes describe a fully 

observable environment for reinforcement 
learning

► A complete specification of an environment 
defines a task

► The agent and environment interact at each of a 
sequence of discrete time steps, t = 0, 1, 2, 3, . 
.

► At each time step t, the agent receives some 
representation of the environment’s state, St 
∈ S, where S is the set of possible states and on 
that basis selects an action, At ∈ A(St), where 
A(St) is the set of actions available in state St

► One time step later, due to its action, the agent 
receives a numerical reward, Rt+1 ∈ R, and 
finds itself in a new state, St+1

The agent– environment interaction



Cont…
► At each time step, the agent implements a mapping from states 

to probabilities of selecting each possible action

► This mapping is called the agent’s policy and is denoted πt , 
where πt(a|s) is the probability that At = a if St = s

► Reinforcement learning methods specify how the agent changes 
its policy as a result of its experience

► The agent’s goal is to maximize the total amount of reward it 
receives over the long run

► Actions can be any decisions to learn how to make, and the 
states be anything that might be useful in making them

► The boundary between agent and environment is not the same 
as the physical boundary of an agent (robot’s or animal’s body)



Cont…
► For example, the motors and mechanical linkages of a robot and its 

sensing hardware should be considered parts of the environment 
rather than parts of the agent

► Rewards, too, are computed inside the physical bodies of natural and 
artificial learning systems, but are considered external to the agent

► The reinforcement learning framework is a problem of goal-directed 
learning from interaction that can be achieved through three signals 
passing back and forth between an agent and its environment: 

► Signal to represent the choices made by the agent (the actions)

► Signal to represent the basis on which the choices are made (the states)

► Signal to define the agent’s goal (the rewards)



Goals and Rewards
► In reinforcement learning, the purpose or goal of the 

agent is formalized in terms of a special reward signal 
passing from the environment to the agent

► At each time step, the reward is a simple number, Rt ∈ R

► The agent’s goal is to maximize the total amount of 
reward it receives, maximizing not immediate reward, but 
cumulative reward in the long run

► So the goals and purposes can be the maximization of the 
expected value of the cumulative sum of a received scalar 
signal (called reward)



Goals and Rewards
► The use of a reward signal to formalize the idea of a goal

► The reward signal is not the place to impart to the agent 
prior knowledge about how to achieve but what to do

► For example, a chess-playing agent should be rewarded 
only for actually winning, not for achieving sub goals such 
taking its opponent’s pieces or gaining control of the 
center of the board

► The reward signal is the way of communicating to the 
agent what is to achieve, not how to achieved



Returns
► The agent’s goal is to maximize the cumulative reward it 

receives in the long run

► If the sequence of rewards received after time step t is 
denoted Rt+1, Rt+2, Rt+3, . .  to maximize the expected 
return, where the return Gt is defined as function of the 
reward sequence

► The return is the sum of the rewards:

      where T is a final time step

► At T the agent– environment interaction breaks naturally 
into subsequences, which we call episodes such as plays of 
a game, trips through a maze, or any repeated 
interactions



Cont…
► At T the agent– environment interaction breaks naturally into 

subsequences, which we call episodes such as plays of a game, trips 
through a maze, or any repeated interactions

► Each episode ends in a special state called the terminal state, followed 
by a reset to a standard starting state 

► Tasks with episodes are called episodic tasks

► In episodic tasks it is required to distinguish the set of all non terminal 
states, denoted S, from the set of all states plus the terminal state, 
denoted S+

► In many cases the agent–environment interaction does not break 
naturally into identifiable episodes, but goes on continually without limit

► For example, an application to a robot with a long life span, called 
continuing tasks



Cont…
► For example, an application to a robot with a long life span, 

called continuing tasks

► The return formulation is problematic for continuing tasks 
because the final time step would be T = ∞, and the return, 
could easily be infinite 

► The agent tries to select actions so that the sum of the 
discounted rewards it receives over the future is maximized

► It chooses At to maximize the expected discounted return: 

     where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate



Cont…
► The discount rate determines the present value of future 

rewards: a reward received k time steps in the future is worth 
only γk-1 times what it would be worth if it were received 
immediately

► If γ < 1, the infinite sum has a finite value as long as the 
reward sequence {Rk} is bounded

► If γ = 0, the agent is “myopic” in being concerned only with 
maximizing immediate rewards: its objective in this case is to 
learn how to choose At so as to maximize only Rt+1

► If each of the agent’s actions happened to influence only the 
immediate reward, not future rewards as well, then a myopic 
agent could maximize by separately maximizing each 
immediate reward



Cont…
► But in general, acting to maximize immediate reward can 

reduce access to future rewards so that the return may 
actually be reduced

► As γ approaches 1, the objective takes future rewards into 
account more strongly



The Markov Property
► The property of environments and their state signals is called 

the Markov property

► The state, given by some preprocessing system, is part of the 
environment

► The state signal should include immediate sensations, such as 
sensory measurements, but it can contain much more 
information

► State representations can be highly processed versions of 
original sensations, or they can be complex structures built up 
over time from the sequence of sensations

► For example: Move eyes over a scene, with only a tiny spot 
corresponding to detail at any one time, build up a rich and 
detailed representation of a scene



Cont…
► In this case the state is constructed and maintained on the 

basis of immediate sensations together with the previous 
state or some other memory of past sensations

► The state signal should not be expected to inform the 
agent of everything about the environment, or everything 
that would be useful to it in making decisions

► For example: If the agent is a paramedic called to a road 
accident, it is not expect that it know immediately the 
internal injuries of an unconscious victim

► In this case there is hidden state information in the 
environment, and that information would be useful if the 
agent knew it, but the agent cannot know it because it 
has never received any relevant sensation



Cont…
► Ideally, a state signal requires to summarizes past 

sensations compactly so that all relevant information is 
retained

► A state signal that succeeds in retaining all relevant 
information is said to be Markov, or to have the Markov 
property

► For example, a checkers position—the current 
configuration of all the pieces on the board, serve as a 
Markov state because it summarizes everything important 
about the complete sequence of positions

► In the most general, causal case the response may depend 
on everything that has happened earlier



Cont…
► In this case the dynamics can be defined only by 

specifying the complete probability distribution as:

     for all r, s′, and all possible values of the past events: S0, 
A0, R1, ..., St−1, At−1, Rt, St, At

► If the state signal has the Markov property, then the 
environment’s response at t + 1 depends only on the state 
and action representations at t, in which case the 
environment’s dynamics can be defined as:

      for all r, s′, St, and At



Cont…
► If an environment has the Markov property, then its 

one-step dynamics enable to predict the next state and 
expected next reward given the current state and action

► Markov states provide the best possible basis for choosing 
actions

► The Markov property is important in reinforcement 
learning because decisions and values are assumed to be a 
function only of the current state



Bioreactor
► Suppose reinforcement learning is being applied to determine 

moment-by-moment temperatures and stirring rates for a 
bioreactor (a large vat of nutrients and bacteria used to 
produce useful chemicals)

► The target temperatures and target stirring rates that are 
passed to lower-level control systems that, in turn, directly 
activate heating elements and motors to attain the targets

► The thermocouple and other sensors used for readings of 
temperatures, stirring rates, Chemical concentration, Nutrient 
levels, Bacterial population density and Target chemical 

► Find possible state, action and reward



Bioreactor
► Possible state, action and reward 

► Here each state is a list, or vector, of sensor readings and 
symbolic inputs 

► Each action is a vector consisting of a target temperature and a 
stirring rate

► The rewards might be moment-by-moment measures of the rate 
at which the useful chemical is produced by the bioreactor and 
are always single numbers



Pick-and-Place Robot
► Consider using reinforcement learning to control the 

motion of a robot arm in a repetitive pick-and-place task

► If we want to learn movements that are fast and smooth, 
the learning agent will have to control the motors directly 
and have low-latency information about the current 
positions and velocities of the mechanical linkages

► Find possible state, action and reward



Pick-and-Place Robot
► The possible state, action and reward

► The states be the latest readings of joint angles and 
velocities

► The actions be the voltages applied to each motor at each 
joint

► The reward might be +1 for each object successfully 
picked up and placed

► Negative reward for jerkiness 

► Penalty for failure to pick/place



Markov Decision Processes
► A state signal that succeeds in retaining all relevant 

information is said to be Markov, or to have the Markov 
property

► A reinforcement learning task that satisfies the Markov 
property is called a Markov decision process, or MDP. If the 
state and action spaces are finite, then it is called a finite 
Markov decision process

► A particular finite MDP is defined by its state and action 
sets and by the one-step dynamics of the environment

► Given any state and action s and a, the probability of each 
possible pair of next state and reward, s′, r, is denoted



Cont…
► The expected rewards for state–action pairs,

► The state-transition probabilities,

► The expected rewards for state–action–next-state triples



Example: Recycling Robot MDP

► A mobile robot has the job of collecting empty soda cans in 
an office environment

► It has sensors for detecting cans, and an arm and gripper that 
can pick them up and place them in an onboard bin

► It runs on a rechargeable battery

► The robot’s control system has components for interpreting 
sensory information, for navigating, and for controlling the 
arm and gripper

► High-level decisions about how to search for cans are made 
by a reinforcement learning agent based on the current 
charge level of the battery



Cont…
► This agent has to decide whether the robot should:

► (1) actively search for a can for a certain period of time

► (2) remain stationary and wait for someone to bring it a can

► (3) head back to its home base to recharge its battery

► Suppose the environment works as follows
► The best way to find cans is to actively search for them, but 

this runs down the robot’s battery, whereas waiting does not
► Whenever the robot is searching, the possibility exists that its 

battery will become depleted
► The agent makes its decisions as a function of the energy 

level of the battery
► It can distinguish two levels, high and low



Cont…
► The state set is S = {high, low}
► The possible decisions—the agent’s actions— wait, search, 

and recharge
► The agent’s action sets are:
► A(high) = {search, wait}
► A(low) = {search, wait, recharge}
► If the energy level is high, then active search can be 

completed without risk of depleting the battery
► A period of searching that begins with a high energy level 

leaves the energy level high with probability α and 
reduces it to low with probability 1 − α



Cont…

► A period of searching undertaken when the energy level is 
low leaves it low with probability β and depletes the 
battery with probability 1 − β

► In this case the robot must be rescued, and the battery is 
then recharged back to high

► Each can collected by the robot counts as a unit reward, 
whereas a reward of −3 results whenever the robot has to 
be rescued

► Let ‘r’search and ‘r’wait, with ‘r’search > ‘r’wait, 
respectively denote the expected number of cans the 
robot will collect (and hence the expected reward) while 
searching and while waiting



Transition Graph
► A transition graph is a useful way to summarize the dynamics 

of a finite MDP

► There are two kinds of nodes: state nodes and action nodes



►Functions of states (or of state–action pairs) that estimate 
how good it is for the agent to be in a given state

►The value of a state is the expected return starting from that 
state; depends on the agent’s policy

►The value of a state ‘s’ under a policy ‘π’, denoted Vπ(s), is 
the expected return when starting in ‘s’ and following ‘π’ 
thereafter

Value Functions



Bellman Equation for a Policy



Cont…
► Bellman Equation expresses a relationship between the 

value of a state and the values of its successor states

► This is a set of linear equations, one for each state

► This reduces the problem of finding the optimal state 
sequence and action to a graph search:



►The value of taking an action ‘a’ in state ‘s’ under policy ‘π’  
is the expected return, denoted by             ,starting from that 
state, taking that action and following ‘π’:

Action-Value Functions

Note that the value of the terminal state, if any, is always zero



►For finite MDPs, policies can be partially ordered:

►There is always at least one (and possibly many)  policy that is better than or 
equal to all the others. This is an optimal policy, denoted as ‘π*’

►Optimal policies share the same optimal state-value function:

►Optimal policies also share the same optimal action-value function:

►This is the expected return for taking action a in state s and thereafter 
following an optimal policy

Optimal Value Functions



Bellman Optimality Equation for V*
► The value of a state under an optimal policy must equal the expected return 

for the best action from that state:

► V* is the unique solution of this system of nonlinear equations

► The optimal action is again found through the maximization process:

► Q* is the unique solution of this system of nonlinear equations.



Solving the Bellman Optimality Equation
► Finding an optimal policy by solving the Bellman Optimality 

Equation requires the following:

► accurate knowledge of environment dynamics;

► we have enough space an time to do the computation;

► the Markov Property

► How much space and time do we need?

► polynomial in number of states (via dynamic programming 
methods);

► BUT, number of states is often huge (e.g., backgammon has 
about 10**20 states)

► We usually have to settle for approximations

► Many RL methods can be understood as approximately solving 
the Bellman Optimality Equation



Example: 6
► Consider the Markov Decision Process 

(MDP) with discount factor γ = 0.5

► Upper case letters A, B, C represent 
states; arcs represent state transitions; 
lower case letters ab, ba, bc, ca, cb 
represent actions; signed integers 
represent rewards; and fractions 
represent transition probabilities

► Consider the uniform random policy π
(s,a) that takes all actions from state ‘s’ 
with equal probability

► The initial value function of V1(A) = 
V1(B) = V1(C) =2

► Apply two iteration of iterative policy 
evaluation to compute a new value 
function V3(s)



► The initial value function of V1(A) = V1(B) = V1(C) =2



Example: 7
► Consider an MDP with three states, 

denoted as A, B, and C, arranged in a 
loop. The transitions and actions are as 
follows: In each state, there are two 
possible actions: "Moves" and "Stays." 
The probability of stay in same state is 
0.2 and probability of move A to B, B to 
C and C to A is 0.8. A reward of 1 is 
received when the agent takes the 
"Moves" action in state C. All other 
transitions result in a reward of 0. 
Assume the agent starts in state A, 
discount factor (γ) = 0.9 and learning 
rate (α) = 1


