
Times asked: 6 times
5 times
4 times
3 times
2 times

1 time
indicates 5-mark question

SPCC Question Bank

1. Introduction to System Software

1. DiƯerentiate between System Software and Application software. #
2. Compare Compiler and Interpreter. #

2. Assemblers
1. Explain forward reference problem with suitable example. #
2. Explain with flowchart design of two pass assembler.
3. Draw and explain the flowchart of Pass 1 of two pass assembler with suitable example.
4. State and explain the types of assembly language statements with examples.
5. Consider the following assembly program:

START 501
 A DS 1

B DS 1
C DS 1

READ A
READ B
MOVER AREG, A
ADD AREG, B
MOVEM AREG, C
PRINT C
END
- Generate Pass-1 and Pass-2 and also show the content of database table involved in it.

3. Macros and Macro Processor
1. Explain the working of a Single pass macro processor with neat flowchart.
2. Explain and draw a neat flowchart of two pass macro processor.
3. Explain advanced macro facilities with suitable examples.
4. Write a short note on: Parameterized macros. #
5. With reference to MACRO, explain the following tables with suitable example:

I) MNT ii) MDT iii) ALA
6. Explain conditional macro with suitable example. #

7. Construct the necessary data structure after compiling the following code by Pass-1 of two-
pass macro processor:

8. Write a short note on: Macro facilities. #
9. Explain Macro and Macro expansion with example. #
10. Explain diƯerent features of macros with suitable example.

4. Loaders and Linkers
1. What are the functions of a Loader. #
2. Explain design of Direct Linking Loader with suitable example. Discuss the databases used.
3. Explain absolute loader. State its advantages and disadvantages. #
4. Explain Dynamic Linking Loader in detail.
5. What is relocation and linking concept in Loaders. #

5. Compilers: Analysis Phase
1. Explain the diƯerent phases of compiler with suitable example; or a given statement.

(Previously asked statements)
i. a = a * b – 5 * 3 / c

ii. P = Q + R – S * 3

iii. a=b*c+10

2. Construct LL(1) parsing table for the given grammar and state whether the given grammar
is LL(1) or not. (Previously asked questions)

3. Write a short note on: Syntax directed translation. #
4. Construct operator precedence parser for the grammar:

E → E+E | E*E | a
Parse the string “a + a * a” using the same parser. #

5. What is Left recursion? Check if the following grammar is left recursive. and take
necessary action if it exists:
 S → SS + | SS*| a #

6. Write a short note on: YACC

7. Construct LR(0) parsing table for the following grammar and analyse the contents of stack
and input buƯer and action taken after each step while parsing the input string
“abbcbcde”.:

8. Construct SLR parser for the following grammar and parse the input “()()” :

S→ (S)S | ε
9. Compare Bottom-Up and Top-Down parser. #
10. Compare Pattern, Lexeme, and token with example. #

6. Compilers: Synthesis phase

1. Explain with suitable example code optimization techniques.
2. Explain diƯerent issues in code generation phase of a compiler.
3. Construct three-address code for the following program: (PYQs)

4. What are the diƯerent ways for Intermediate code representation? Explain with example.
5. Generate 3 address code for the following C program and construct flow graph with the

help of basic blocks(PYQs):

6. Explain DAG and construct DAG for the following expression:
x = m + p / q - t + p / q * y

7. Write a short note on Peephole Optimization. #
8. Explain the concept of basic blocks and flow graph with example of the three-address

code.

 1 2 3 4 5 6
2024 Dec 5 15 20 15 25 40
2024 May 5 15 15 15 30 35
2023 Dec 5 25 15 20 25 30
2023 May 5 25 15 15 35 25
2022 Dec 5 10 25 15 25 40
Last 5 Avg 5 15-25 15 15 25 30
*2022 May 5 15 10 20 20 25

Total 30 105 100 100 160 185
*20-marks MCQs asked in 2022 May

SPCC Answer Bank
multiple times asked questions highlighted

question asked once with red font
indicates 5-mark question

1. Introduction to System Software

1. DiƯerentiate between System Software and Application software. #

2. Compare Compiler and Interpreter. #

2. Assemblers
3. Explain forward reference problem with suitable example. #

A forward reference occurs when a symbol (like a label or variable) is used in the code before it is
defined. This is a problem in single-pass assemblers, where the assembler reads the code only
once meaning it might encounter an undefined symbol with no prior knowledge of its address.

Example:

 JMP LOOP ; Forward reference to label "LOOP"

 MOV A, B

 LOOP: ADD A, C ; Definition of the label

The assembler encounters JMP LOOP, but at that point, it doesn't know where LOOP is in
memory because it's defined later.

How Forward Reference is Solved using Forward Reference Table:

During Pass 1:

o When a symbol (label) is used before it's defined, its reference (location where it is
needed) is stored in the Forward Reference Table.

o The symbol is added to the symbol table with an undefined address.

During Pass 2:

o When the symbol is finally defined, the assembler updates the symbol table.

o The assembler then revisits the locations stored in the FRT and patches them with the
correct address.

4. Explain with flowchart design of two pass assembler.

Pass 1:
1) Location counter (LC) is initialized.
2) Source statement is read.
3) Operation code is examined to determine if it is a pseudo-opcode.
4) If it is not a pseudo-op then check MOT.
5) The matched MOT entry specifies the length of the instruction.
6) The operand field is examined for a presence of a literal.
7) If the literal is found, it is entered into the literal table (LT) for further processing.
8) The label field is examined for a presence of a symbol.
9) If a symbol is found, it is entered into the symbol table (ST).
10) Finally, the current value of LC is incremented by the length of the instruction and the copy of
the source card / Output file of PASS-1 is send to PASS-2 for further processing.

Pass 2:
1. LC is initialized.
2. Statement is read from the copy file created by PASS-1
3. Operation code is examined to determine if it is a pseudo-op.
4. If it is not a pseudo-op, MOT is examined to find a match from the source statement.
5. There are two types of instruction format:

a. RR: In RR format each of the register specific fields are evaluated.
b. RX: Both register and index fields are evaluated.

6. After the instruction is evaluated, it is put into a necessary format for the processing by the
loader.

7. A listing containing the copy of the source card is used to assign storage locations in
hexadecimal format.

5. Draw and explain the flowchart of Pass 1 of two pass assembler with suitable example.
(Refer previous answer for flowchart and theory of Pass 1)

Goal of Pass 1:
 Assign addresses to all statements.
 Build the Symbol Table.
 Track Literals.

Example assembly program:

START 100
MOVER AREG, =’1’
LOOP ADD AREG, NUM
 SUB AREG, =’2’
 STOP
NUM DC 5
END

Step-by-Step Pass 1 Table:

Symbol Table:

Literal Table:

6. State and explain the types of assembly language statements with examples.

1. Imperative Statements:

Imperative statements in assembly language are instructions that explicitly specify the
operations to be performed by the computer's CPU. These statements provide step-by-step
instructions for the processor to execute.

MOV AX, 5 ; Move the value 5 into register AX

ADD AX, 3 ; Add 3 to the value in register AX

Purpose: Directly map to machine instructions, telling the processor what actions to perform

2. Declarative statements:

Declarative statements in assembly language are used to declare data or define structures
without specifying the sequence of operations to be performed. These statements are often
used to reserve memory space for variables, constants, or data structures.

DATA SEGMENT

X DB 5 ; Declare a byte variable X with value 5

Y DW 1000 ; Declare a word (2 bytes) variable Y with value 1000

DATA ENDS

Purpose: Define data, labels, or constants, providing information for the assembler rather than
generating executable code.

a) DC (Define Constant):

Used to create and initialize constants (numbers or text).

NUM DC 10 ; Store number 10

TEXT DC 'Hi' ; Store text "Hi"

b) DS (Define Storage):

Used to reserve memory without giving it a value.
Useful for variables or buƯers that will be filled during the program.

X DS 1 ; Reserve 1 byte for variable X

BUF DS 5 ; Reserve 5 bytes for a small buƯer

3. Assembler directives:

Assembler directives are special commands used by the assembler (the program responsible for
translating assembly code into machine code) to control the assembly process. These directives
provide instructions to the assembler regarding how to process and organize the code.

 .MODEL SMALL ; Specify the memory model for the program

a) START:

 The START directive is used to specify the starting address of the program.

START 1000 ; The program starts at address 1000

 b) END:

 The END directive marks the end of the assembly language program.

 ... END ; Marks the end of the program

c) EQU (Equate):

 The EQU directive is used to assign a constant value to a symbol or label.

LENGTH EQU 100 ; Define a constant symbol LENGTH with a value of 100

d) ORG (Origin)

Sets the starting memory address.

ORG 2000 ; Start placing code/data at address 2000

e) LTORG (Literal Origin)

Tells the assembler to store any literals (constants) here.

DC X'0A' ; Define a hex value

LTORG ; Store the value here

7. Consider the following assembly program:
START 501

 A DS 1
B DS 1
C DS 1

READ A
READ B
MOVER AREG, A
ADD AREG, B
MOVEM AREG, C
PRINT C
END

-Generate Pass-1 and Pass-2 and also show the content of database table involved in it.

(ChatGPT ’ed)

Pass 1: Tasks

 Build Symbol Table (SYMTAB)

 Generate intermediate code

 Maintain location counter (LC)

Location Counter (LC) Tracking:

Symbol Table (SYMTAB):

Intermediate Code (Pass 1 Output)
(Format: LC) (Opcode Class, Opcode No) Operand)

(Assumed opcodes: MOVER – 04, MOVEM – 05, ADD – 01, READ – 09, PRINT – 10, START – 01,
END – 02)

Pass 2: Tasks

Generate final machine code using symbol table and intermediate code

 Machine Code (Pass 2 Output)

Summary of Tables Used

Symbol Table:

 Maps labels (variables) to memory locations.

Literal Table:

 Not used here (no literals like ='5' used)

Pool Table:

 Not needed (no literal pools here)

Intermediate Code:

 Stored between Pass 1 and Pass 2 to help generate final code

3. Macros and Macro Processor
8. Explain the working of a Single pass macro processor with neat flowchart.

Components of a Single Pass Macro processor:

1. Macro Name Table (MNT)

 Stores the names of all macros defined in the source code.

 Each entry includes:

o Macro name

o Starting index/line in the Macro Definition Table (MDT)

2. Macro Definition Table (MDT)

 Stores the actual body of each macro.

 Each line of the macro definition is saved here, with placeholders for parameters..

3. Argument List Array (ALA)

 Temporary structure used during macro definition and expansion.

 Stores formal arguments (during definition) and actual arguments (during call).

In a single-pass macro processor, these four variables play a crucial roles in managing macro
definitions and expansions during processing:

MNTC (Macro Name Table Counter): Tracks the next free entry in the Macro Name Table (MNT).

MDTC (Macro Definition Table Counter): Points to the next free entry in the Macro Definition
Table (MDT).

MDLC (Macro Definition Level Counter): Keeps count of nesting level during macro definitions.

MDI (Macro Definition Indicator): A flag (ON/OFF) to show whether a macro is currently being
defined.

Working of a Single Pass Macro processor:

 The macro processor starts by initializing tables like:

o Macro Name Table (MNT)
o Macro Definition Table (MDT)
o Argument List Array (ALA)

 It reads each line of source code:

o If it finds a macro definition (MACRO):

 The macro name is added to the MNT.

 The macro body is stored in the MDT.

 Formal parameters are replaced with indexes in the ALA for future
substitution.

 When it reaches MEND, the macro definition is complete.

 If it finds a macro call:

o The MNT is used to locate the macro in the MDT.

o Actual arguments are stored in the ALA.

o The macro body is expanded using the ALA and written to output.

 If it's a normal (non-macro) line, it is directly copied to the output.

 The process continues until an END pseudo-op is found.

 The final expanded source code is then passed to the assembler for further compilation.

9. Explain and Draw a neat flowchart of two pass macro processor.

Pass 1 (Definition of MACROS)

• Scans input line by line, initializing MDTC = 1 and MNTC = 1.
• Stores macro definitions (excluding MACRO line) in MDT and adds the name to MNT with a

pointer.
• Ends when END pseudo-op is encountered, transferring control to Pass 2.

Pass 2 (Replacing MACRO calls by its definition)

Reads input lines, checking if the opcode matches an MNT entry.

Retrieves MDTP from MNT and sets up ALA for argument substitution.

Expands macros by replacing dummy arguments with actual values from the call.

Stops expansion at MEND and continues scanning until END, passing the expanded source to
the assembler.

10. Explain advanced macro facilities with suitable examples.

Advance macro facilities are aimed at supporting semantic expansion. Key features include:

1. Facilities for alteration of flow of control during expansion.
2. Expansion time variables
3. Attributes of parameters.

1. Alteration of Flow of Control during Expansion

Macro processors can control which macro statements are expanded using:

a) Sequencing Symbols (SS):

Defined using a label in the macro body (e.g., .LOOP).

Used to control macro flow using AIF, AGO, or ANOP.

b) AIF (Assembler IF):

Used for conditional expansion.

AIF (&ARG EQ 0) SKIP

MOVER AREG, ONE

.SKIP ANOP

If &ARG is 0, control jumps to label .SKIP, skipping the instruction.

c) AGO (Assembler GO):

Unconditional jump during expansion.

Syntax:

AGO <sequencing symbol>

Example:

AGO END

MOVER AREG, B

.END ANOP

Always jumps to .END, skipping MOVER.

d) ANOP (Assembler No Operation):

Defines a label (sequencing symbol) with no action.

Syntax:

<sequencing symbol> ANOP

2. Expansion Time Variables (EVs)

EVs are variables used only during macro expansion.

Local EVs (LCL): Exist only during a single macro call.

Global EVs (GBL): Accessible across multiple macro calls in a program.

Example:

MACRO

 LCL &X

 &X SET 1

 DB &X

MEND

When the macro is invoked, &X is a local variable that exists only during the macro call, is
assigned the value 1 with &X SET 1, and its value is then used in DB &X to output DB 1.

3. Attributes of Parameters

Attributes of parameters allow the macro processor to check the type, value, or length of
arguments passed to a macro. These are useful in conditional expansion based on parameter
properties.

Commonly used attributes:

11. Write a short note on: Parameterized macros. #

A parameterized macro is a type of macro that accepts arguments and inserts them into its body
during macro expansion. It cannot directly modify the instruction being replaced; instead, it uses
dummy parameters in the macro definition, which are substituted by actual arguments during
macro invocation.

This allows flexibility by customizing each macro call while keeping the macro definition
reusable. These macros are powerful tools for inline code expansion without writing repetitive
code.

Example:

MACRO

LOADVAL ®, &VAL

 MOV ®, &VAL

MEND

Macro Call: LOADVAL A, 5

D

Expansion: MOV A, 5

This makes code cleaner and more eƯicient by reusing logic with diƯerent values or registers.

12. With reference to MACRO, explain the following tables with suitable example:
I) ALA ii) MDT iii) MNT

13. Explain conditional macro with suitable example. #

A conditional macro is a type of macro that uses conditions (like IF, ELSE, ENDIF) to control
which parts of the macro body get expanded based on the values of arguments passed during
the macro call.

This helps make the macro more flexible and reusable, especially when the output code
depends on some condition.

Basic Syntax:

IF condition

 <true block>

ELSE

 <false block>

ENDIF

Example:

MACRO

PRINTMSG &FLAG

IF &FLAG EQ 1

 MVI A, 'Y' ; Load Yes

ELSE

 MVI A, 'N' ; Load No

ENDIF

MEND

The macro PRINTMSG takes one argument: &FLAG.

If the value is 1, it loads 'Y' in register A.

If the value is 0, it loads 'N'.

The macro changes its output based on the condition.

14. Construct the necessary data structure after compiling the following code by Pass-1
of two-pass macro processor:

To construct the necessary data structures after Pass-1 of a two-pass macro processor, we
identify:

1. Macro Name Table (MNT)

2. Macro Definition Table (MDT)

3. Argument List Array (ALA)

15. Write a short note on: Macro facilities. #

A macro facility refers to the set of features or functions that enable the processing and
expansion of macros. A list of common macro facilities within macro processors:

1. Macro Definition

o Allows the user to define a macro, typically with a name and a sequence of
instructions or statements (e.g., MACRO in assembly language).

2. Macro Expansion

o The macro processor replaces each macro call in the code with the defined macro
content, performing text substitution.

3. Parameters

o Macros can accept parameters, allowing for more flexible and reusable macro
definitions (e.g., MACRO X, Y).

4. Conditional Assembly

o Allows macros to be conditionally expanded or not, based on certain conditions
(e.g., using IF, ELSE, ENDIF).

5. Recursive Macros

o Some macro processors allow macros to call other macros or even themselves,
which enables more complex expansions.

16. Explain Macro and Macro expansion with example. #

Macro: A macro is a sequence of instructions grouped under a single name that can be reused
multiple times in an assembly program. It is a way to define code templates that get expanded
wherever they are called, reducing redundancy and improving code readability.

Macro Expansion: When a macro is called in the program, the assembler replaces the macro
call with the actual sequence of instructions defined in the macro. This process is known as
macro expansion.

Example:

ADDNUM MACRO A, B

 MOV AX, A ;

 ADD AX, B

ENDM

ADDNUM 5, 10 ; Expands to:

 ; MOV AX, 5

 ; ADD AX, 10

This creates a macro named ADDNUM that takes two values (A and B) and generates two
instructions.

Macro Call: ADDNUM 5, 10

When this line is used, the assembler replaces it with:

MOV AX, 5

ADD AX, 10

This is called macro expansion.

17. Explain diƯerent features of macros with suitable example.

1. Code Reusability

o Macros help avoid the repetition of code by defining a set of instructions or
statements that can be reused multiple times in a program. Once a macro is defined,
it can be invoked as many times as needed, saving time and reducing errors.

o Example: MACRO MOVE 2, 3 can be called multiple times to move to the same
coordinates.

2. Parameterization

o Macros can accept parameters, which makes them flexible. Instead of writing the
same sequence of instructions multiple times, you can pass diƯerent values each
time the macro is invoked, making the macro more dynamic and adaptable.

o Example: MACRO ADD a, b expands to a + b when called as ADD 5, 3.

3. No Memory Overhead

o Unlike function calls, macros do not create new memory locations for arguments or
return addresses. They are expanded directly into the program code by the macro
processor at the preprocessing stage, which reduces the memory overhead typically
associated with function calls.

o Example: MACRO PRINT 5 directly inserts the print instruction without using memory
for a function call.

4. Faster Execution

o Since macros are expanded inline by the macro processor, they eliminate the need for
function calls or context switches, which leads to faster execution. The code for the
macro is directly inserted into the program at the point of use.

o Example: MACRO INC X expands to X = X + 1, directly updating the value.

5. Conditional Expansion

o Macros can include conditional logic, allowing for diƯerent code expansions
depending on certain conditions or flags. This makes macros adaptable to diƯerent
contexts or environments, such as debugging or platform-specific code.

o Example: MACRO DEBUG_LOG only expands if DEBUG is set, otherwise does nothing.

6. Nested Macros

o Macros can invoke other macros, allowing for more complex, modular, and structured
macro definitions. This capability lets a simple macro rely on the functionality of other
macros, making code easier to maintain and extend.

o Example: MACRO CUBE X can call SQUARE X to compute X * X * X.

4. Loaders and Linkers
18. What are the functions of a Loader. #

A loader is a system program responsible for loading executable programs into memory for
execution. It performs the following key functions:

1. Allocation: Assigns the necessary memory space for the program in the main memory.

2. Linking: Combines two or more object programs or modules and supplies necessary
information.

3. Relocation: It modifies the object program so that it can be loaded at an address diƯerent
from its original location

4. Loading: It loads the object program into the main memory for execution.

4

19. Explain design of Direct Linking Loader with suitable example. Discuss the databases
used.

Questions asked breakdown:
Explain Direct Linking Loader in detail. X2
Explain design of Direct Linking Loader. X2
Discuss the databases used in Direct Linking Loader.
Explain Direct Linking Loader with suitable example.

Direct Linking Loader:
It is a general relocatable loader and is perhaps the most popular loading scheme presently
used.
It is a relocatable loader.
It allows multiple procedure segments and multiple data segments.
The assembler must give the loader the following information:

1. The length of the segment.
2. A list of symbols defined in the current segment that may be referenced by other segments

– public declaration.
3. A list of all symbols not defined in the segment but referenced in the segment – external

variables.
4. Information about address constants.
5. The machine code translation of source program and the relative addresses assigned.

The object module produced by the assembler is divided into 4 sections:
1. External Symbol Directory (ESD)
2. Actual Assembled Program (TXT)
3. Relocation Directory (RLD)
4. End of the Object Module (END)

Two pass direct linking loader scheme:

Example:

1. External Symbol Directory (ESD):
Lists all external symbols (like functions or variables) that are defined in or required by the
program.

2. Actual Assembled Program (TXT):
Contains the machine code instructions generated by the assembler. It also includes data and
their corresponding load addresses.

3. Relocation Directory (RLD):
Identifies addresses within the code that need to be modified during relocation.
Used when the program is loaded at a diƯerent memory location than originally assumed.

4. End of the Object Module (END):
Marks the end of the object module. It may also contain the starting address for execution.

Advantages of Direct Linking Loader:

1. Modular Programming Support – Allows linking of multiple object modules developed
independently.

2. EƯicient Memory Use – Loads only necessary modules; helps save memory.

Disadvantages of Direct Linking Loader:

1. Complex Implementation – Requires detailed tables (ESD, RLD, TXT) and multiple
passes.

2. Longer Load Time – Linking is done during loading, which can delay program start.

Databases Required for Direct Linking Loader: (If asked)

(I) PASS 1

1. Object files used for input.

2. Initial Program Load Address (IPLA) gives the address to load the first segment given by
operating system or programmer.

3. Program Load Address (PLA) keeps the track of each location for the segments assigned to it.

4. To store external symbol and its corresponding, assigned core address GEST is used.

5. Output of PASS1 is used as input for PASS2.

6. Load map is used to specify external symbols and their assigned output values.

(II) PASS 2

1. Output of PASS1 is used as input for PASS2.

2. The Initial Program Load Address Parameter (IPLA) from PASS1.

3. Program Load Address Counter prepared by PASS1.

4. GEST prepared by PASS1.

5. The correspondence between the external symbols core address and name mentioned on
ESD and RLD cards is given by Local External Symbol array.

20. Explain absolute loader. State its advantages and disadvantages. #

An absolute loader loads a binary program into memory for execution. The binary file includes:

 A header record with the load origin, program length, and execution start address.

 A series of binary image records, each containing part of the program's code, its load
address, and byte count.

The loader reads the header, records the load origin and length, and then repeatedly reads image
records, placing code into memory at specified addresses. Finally, it transfers control to the
execution start address.

Advantages of Absolute Loading

1. Simplicity & Speed: Easy to implement and fast in execution.

2. Memory EƯicient: Loader is smaller than the assembler, saving memory.

3. Multi-language Support: Supports programs written in diƯerent languages by converting
to a common object format.

Disadvantages of Absolute Loading

1. Manual Addressing Required: Programmer must specify memory addresses to the
assembler.

2. Risk of Overlap: Programmer must ensure no overlapping of addresses.

3. Reassembly Needed on Modification: Any changes require complete reassembly of the
program.

21. Explain Dynamic Linking Loader in detail.

A Dynamic Linking Loader is a component of an operating system that handles the loading of
dynamically linked libraries (DLLs) or shared objects (SOs) into memory at runtime, rather than
at compile time.

1. Purpose:

o It allows programs to use shared libraries at runtime instead of linking them directly
during the compilation process.

o It ensures that external code or resources are loaded into memory only when
needed, saving memory and disk space.

2. Operation:

o When a program starts, the loader checks for the dynamic dependencies (libraries)
defined in the program’s binary (e.g., ELF or PE files).

o It then loads these libraries into memory. If a library is already loaded, it is reused
(shared among processes).

o The loader resolves symbols (function names, variables) from the libraries and links
them with the program.

3. Process Flow:

o Load Libraries: The loader identifies the shared libraries required by the program
and loads them into memory.

o Relocation: If the library code isn't loaded at the exact address expected, the loader
adjusts the program’s address references to point to the correct memory locations.

o Symbol Resolution: The loader resolves any symbols (functions, variables) that the
program or libraries use.

o Linking: The loader binds the resolved symbols to the actual memory locations in
the loaded libraries.

o Execution: Once the libraries are linked, the program starts executing with access to
the dynamically linked functions.

4. Advantages:

o Memory EƯiciency: Multiple programs can share a single copy of a library.

o Modularity: Programs can be updated without recompiling them, as long as the
interface to the library remains the same.

22. What is relocation and linking concept in Loaders. #

Relocation:

Relocation is the process of modifying address-dependent instructions in a program so it can be
loaded at a diƯerent memory location than originally specified. Some instructions contain
absolute addresses; the loader updates these using relocation information to fit the current
memory space.

Linking:

Linking is the process of combining multiple object modules into a single executable. It resolves
external references between programs or modules by connecting function calls and variable
references to their correct definitions across modules.

Together, relocation and linking ensure that programs are loaded correctly and external
dependencies are resolved before execution.

5. Compilers: Analysis Phase
23. Explain the diƯerent phases of compiler with suitable example; or a given statement.

(Previously asked statements)
i. a = a * b – 5 * 3 / c

ii. P = Q + R – S * 3

iii. a=b*c+10

Analysis Phase:

An intermediate representation is created from the given source code. It consists of the
following:

 Lexical Analyzer: The lexical analyzer divides the program into “tokens.
 Syntax Analyzer: The Syntax analyzer recognizes “sentences” in the program using the

syntax of the language
 Semantic Analyzer: Semantic analyzer checks the static semantics of each construct.
 Intermediate Code Generator: Intermediate Code Generator generates “abstract” code.

Synthesis Phase:

An equivalent target program is created from the intermediate representation. It has two parts :

 Code Optimizer: Enhances intermediate code by eliminating ineƯiciencies.
 Code Generator: Translates abstract intermediate code into specific machine instructions.

iii. a=b*c+10

 i.

24. Construct LL(1) parsing table for the given grammar and state whether the given grammar
is LL(1) or not. (Previously asked questions)

25. Write a short note on: Syntax directed translation. #

Syntax-Directed Translation (SDT) combines grammar with semantic rules to assign meaning to
syntactic structures. Each non-terminal in SDT can have attributes, evaluated using rules
associated with production rules. These attributes store values such as numbers, strings, or
memory locations. SDT enables translating programming constructs according to predefined
semantic rules, as seen in compiler design.

SDT (syntax-directed translation) adds 'semantics rules' or actions to CFG products. As a result,
we may refer to the grammar that has been augmented as attributed grammar

Syntax Directed Definition

A Context-Free Grammar (CFG) with attributes and rules is called a Syntax-Directed Definition
(SDD). It associates grammar symbols in an extended CFG with rules that govern grammar
production.

Types of Syntax Directed Definitions

S-attributed Translation If the node's attributes are synthesised attributes, the SDD is S-
attributed. For evaluation of an S-attributed SDD, the nodes of the parse tree can be traversed in
any bottom-up sequence.

L-attributed Translation: If the attributes of nodes are synthesized or inherited, an SDD is L-
attributed. The parse tree can now be traversed exclusively from left to right. This is because L
stands for left-to-right traversal in 'L-attributed translation.'

Types of Attributes: There are two types of attributes:

1. Synthesized Attributes

A synthesized attribute is derived from the attribute values of a node’s children.
For a non-terminal symbol (node) N, synthesized attributes are:

 The attribute value of children.
 The total attribute values of N.

2. Inherited Attributes

An inherited attribute is derived from the attribute values of a node’s parent or siblings.
For a non-terminal symbol (node) N, inherited attributes are:

 Parent’s attribute values.
 Sibling’s attribute values.
 Total attribute values of N.

26. Construct operator precedence parser for the grammar:
E → E+E | E*E | a
Parse the string “a + a * a” using the same parser. #

 (id instead of a)

27. What is Left recursion? Check if the following grammar is left recursive. and take
necessary action if it exists:
 S → SS + | SS*| a #

Left recursion occurs in a grammar when a non-terminal refers to itself as the first symbol on the
right-hand side of its production rule.

It is of the form: A → Aα | β

This is left-recursive because A appears first in Aα.

Yes, the given grammar is left-recursive, because:

S → SS+ and S → SS* both start with S on the right-hand side.

Removing Left Recursion:

To remove left recursion, we rewrite the grammar using a new non-terminal.

Original:

S → SS+ | SS* | a

Transformed:

S → aS'

S' → S+S' | S*S' | ε

This removes left recursion and makes the grammar suitable for top-down parsing.

28. Write a short note on: YACC #

YACC stands for Yet Another Compiler-Compiler. It is a tool used to generate parsers in compiler
design. It takes a context-free grammar as input and produces C code that can parse input
according to that grammar.

 It is used with lex (a lexical analyser) to build compilers or interpreters.

 YACC helps in syntax analysis by creating a parser that checks if the tokens from the lexer
follow the grammar rules.

Example Use:
Used to build parsers for programming languages like C, where YACC handles grammar rules
and syntax checking.

Advantages of YACC:

1. Automates Parser Creation: Simplifies the process of writing parsers by generating code
from grammar rules.

2. Handles Complex Grammars: Supports LALR(1) parsing, suitable for most programming
languages.

29. Construct LR(0) parsing table for a given grammar and analyse the contents of stack
and input buƯer and action taken after each step while parsing the input string .

30. Construct SLR parser for the following grammar and parse the input “()()” :
S→ (S)S | ε

31. Compare Bottom-Up and Top-Down parser. #

32. Compare Pattern, Lexeme and token with example. #

6. Compilers: Synthesis phase

33. Explain with suitable example code optimization techniques.
1. Machine Independent code optimization techniques:

1. Constant Folding:
Constant folding evaluates expressions with constant operands at compile time and replaces
them with a single computed value.

Example:
area := (22.0 / 7.0) * r ** 2

is replaced with

area := 3.14286 * r ** 2

2. Constant Propagation:
Constant propagation replaces a variable with its assigned constant value wherever it appears in
an expression.

Example:
pi := 3.14286
area = pi * r ** 2

is replaced with

area = 3.14286 * r ** 2

3. Dead Code Elimination:
Dead code refers to portions of the program that will never be executed. If a computation’s result
is never used, it is considered dead and can be removed from the code.

Example:

i = 0;
if(i == 1) {
 a = b + 5;
}

Here, the if statement is dead code because i == 1 will never be true.

2. Machine-Dependent Optimization

1. Instruction Scheduling: Reordering instructions to minimize CPU pipeline stalls and improve
execution speed.

Example:

Before:

LOAD A

MUL A, B

ADD C, A

This may stall because MUL and ADD both depend on A.

After (Reordered to reduce stall):

LOAD A

ADD C, A ; Done while MUL waits for A to be ready

MUL A, B

2. Register Allocation: EƯiciently assigning frequently used variables to CPU registers instead
of memory for faster access.

Example:

Before:

int a = x + y;

int b = a * 2;

'a' stored in memory, accessed again for 'b'

After (using register):

MOV R1, x

ADD R1, y ; 'a' stored in register R1

MUL R2, R1, 2

Avoids storing and reloading from memory.

3. Peephole Optimization: Localized transformations in small instruction sequences to
eliminate redundant operations, such as replacing multiply by 2 with left shift.

Example:

; Before optimization

MUL R1, R1, 2

; After optimization

SHL R1, 1 ; shift left by 1 = multiply by 2

Replaces a costly multiply with a faster shift instruction.

34. Explain diƯerent issues in code generation phase of a compiler.

The code generation phase translates intermediate code into target machine code. It must
ensure that the generated code is correct, eƯicient, and optimized for the specific architecture.
Several issues must be handled carefully to produce high-quality code:

1. Input Data for Code Generator

The code generator takes intermediate representations such as:

 Three-Address Code (quadruples, triples)

 Linear Notations (prefix, postfix)

 Graphical Forms (syntax trees, DAGs)

The generator receives such intermediate representations and it must understand and handle
the format accurately.

2. Target Program

Knowledge of the machine architecture and instruction set is essential. It influences whether the
code will be absolute, re-locatable, or assembly-level.

3. Instruction Selection

Choosing the right machine instructions based on the IR level and instruction set aƯects
eƯiciency.
Example: Selecting INC A over ADD A, 1 is faster on some architectures.

4. Register Allocation and Assignment

EƯicient use of limited CPU registers improves performance. The code generator decides which
variables go into which registers at diƯerent stages.
Example: Keeping loop counters in registers avoids memory access.

5. Evaluation Order

The order of evaluating expressions aƯects temporary variable usage and register pressure.
Example: In a + b * c, evaluating b * c first may save registers.

6. Machine-Specific Constraints

Some architectures have alignment rules or special registers. The code must respect such
constraints to run correctly.

7. Preservation of Correctness

The generated code must preserve the exact semantics of the source program under all
execution paths.

8. Optimization Trade-oƯs

The compiler must balance between compilation speed and code quality. Over-optimizing can
slow down compilation.

35. Construct three-address code for the following program: (PYQs)

i)

ii) for (i = 0; i < 10; i++)

{

 if (i < 5)

 a = b + c * 3;

 else

 x = y + z;

 }

Three-Address Code (TAC):

i = 0

L1: if i >= 10 goto L4

 if i < 5 goto L2

 t1 = y + z

 x = t1

 goto L3

L2: t2 = c * 3

 t3 = b + t2

 a = t3

L3: i = i + 1

 goto L1

L4: exit

iii) i = 1;

 x = 0;

while (i <= n)

{

 x = x + 1;

 i = i + 1;

}

Three-Address Code:

i = 1

x = 0

L1: if i > n goto L2

 t1 = x + 1

 x = t1

 t2 = i + 1

 i = t2

 goto L1

L2: exit

36. What are the diƯerent ways for Intermediate code representation? Explain with example.

After syntax and semantic analysis of the source program, many compilers generate an explicit
low-level or machine-like intermediate representation, which we can think of as a program for an
abstract machine.
This intermediate representation should have two important properties: it should be easy to
produce and it should be easy to translate into the target machine.

Three ways of intermediate representation:
 Graphical Representation (Syntax tree & DAG)
 Postfix notation
 Three address code

Graphical Representations:
Syntax Tree & DAG: A Syntax Tree represents the natural hierarchical structure of a source
program. A DAG (Directed Acyclic Graph) gives the same information but in a more compact way
because common subexpressions are identified.

A syntax tree and DAG for the statement a = b * - c + b * - c are as follows:

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the tree in
which a node appears immediately after its children. The postfix notation for the syntax tree
given above is:
a b c - * b c - * + assign

Three-Address Code (TAC):
(Also applicable for Write a short note on: Three-address code representation. # [Asked twice])

Three-address code is a sequence of statements of the general form x: = y op z
Where x, y and z are names, constants, or compiler-generated temporaries; op stands for any
operator, such as a fixed-point or floating-point arithmetic operator, or a logical operator on
Boolean valued data.
Example:

a = b + c;

d = a - e;

Three-address code:

t1 = b + c

t2 = t1 - e

d = t2

Three-address code is an intermediate representation in compilers where each instruction has
at most three operands. It can be implemented using:

1. Quadruples

 Uses four fields: op, arg1, arg2, and result.

 Stores the operation and its two operands, along with the result.

2. Triples

 Uses only three fields: op, arg1, and arg2.

 Avoids naming temporary variables by using statement positions.

Here, (0) refers to result of instruction 0, i.e., t1.

3. Indirect Triples

 Uses an array of pointers to triples instead of direct triples.

 Allows rearranging execution order by modifying the pointer list.

Uses same Instruction Table of triple.

37. Generate 3 address code for a given C programs and construct flow graph with the help of
basic blocks:

38. Explain DAG and construct DAG for a given expression.

In compilers, a syntax tree represents expressions with a unique path from the root to each leaf.
However, when common sub-expressions exist, a Directed Acyclic Graph (DAG) is more
eƯicient, as it allows sharing of identical subtrees, saving space and avoiding redundant
computation.

A DAG is a directed graph with no cycles, where:

 Each node represents an operation or operand.

 Edges point from operators to their operands.

 A sub-expression like (b - c) reused in diƯerent parts of the expression is represented only
once in the DAG.

Example Expression:
(a / b) + (a / b) * (c + d)

Step 1: Identify Common Sub-expressions

 (a / b) appears twice → it should be computed once in the DAG.

 (c + d) appears once.

Step 2: Build the DAG Step-by-Step

1. Leaf Nodes:

a, b, c, d

2. Build Sub-expressions:

 a / b → node1

 c + d → node2

 node1 * node2 → node3

 node1 + node3 → Final node (root)

Another example:

39. Write a short note on Peephole Optimization. #

Peephole optimization is a machine-dependent, local optimization technique used in the final
stages of compilation. It examines a small set of instructions (a "peephole") in the generated
code and looks for patterns that can be replaced with simpler, faster, or shorter equivalents
without changing the program’s behaviour.

Key Characteristics:

 Works on small windows of code (typically 1 to 5 instructions).

 Focuses on improving performance and reducing code size.

 Applied after intermediate code is generated, just before final machine code.

Common Optimizations Include:

 Constant folding: e.g., ADD R1, 0 → (remove)

 Strength reduction: e.g., MUL R1, 2 → SHL R1, 1

 Eliminating unreachable or dead code

Example:

; Before optimization

MUL R1, R1, 2

; After optimization

SHL R1, 1 ; shift left by 1 = multiply by 2

Replaces a costly multiply with a faster shift instruction.

40. Explain the concept of basic blocks and flow graph with example of the three-address
code.

Basic Block: A basic block is a sequence of consecutive instructions in a program that:

 Has only one entry point

 Has only one exit point

 No jumps or labels in the middle of the block.

Example:

a = 5

b = 10

c = a + b

This is a basic block. If there were a jump or label between these, it would break the block.

Flow Graph: A flow graph is a directed graph where:

 Nodes represent basic blocks.

 Edges represent control flow (how control moves from one block to another).

Example with Three-Address Code (TAC):

C program:

if (a < b)

 c = a + b;

else

 c = a - b;

d = c * 2;

Three-Address Code (TAC):

1. if a < b goto L1

2. else goto L2

3. L1: t1 = a + b

4. c = t1

5. goto L3

6. L2: t2 = a - b

7. c = t2

8. L3: t3 = c * 2

 9. d = t3

Flow graph:

 ~ AJ

	Question bank
	1. Introduction to System Software
	2. Assemblers
	3. Macros and Macro Processor
	4. Loaders and Linkers
	5. Compilers: Analysis phase
	6. Compilers: Synthesis phase

