TCS Theory Answer bank

1.Basic concepts and Finite Automata
1. Explain applications of Finite Automata(FA).

Finite automata are used for solving several common types of computer algorithms.
Some of them are :

(i) Design of digital circuit

(i) String matching

(iii) Communication protocols for information exchange.

(iv) Lexical analysis phase of a compiler.

Finite automata can work as an algorithm for regular language. It can be used for
checking whether a string we L, where L is a regular language. '

v. Text Search and Pattern Matching
vi. Spell Checkers
vii. Regular Expression Matching
viii. Natural Language Processing (NLP)
2. Discuss difference in transition function of FA, PDA and TM.

Differences in Transition Functions

Aspect

Form of
Transition
Function

Inputs

Outputs

Memory Used

Operations

Example

Transition

Finite Automaton
(FA)

d:QxXE-Q

Current state and

input symbol

Next state

No memory (only

states)

State transition
based on input

symbol

5(‘103 a) —d1

Pushdown Automaton (PDA)

0:QxExT—>QxTI*

Current state, input symbol,

and top of stack symbol

Next state and stack operation

(push, pop, or no change)

Stack memory (last-in-first-out,
or LIFO)

State transition, stack
operations based on input

symbol and stack top

5(Q0aa,X) = (ql,v), where
X is popped and 7y is pushed

Turing Machine (TM)

0:QxI' > Q xT x
{L,R, S}

Current state and tape symbol

Next state, symbol to write on
tape, and head movement

(left, right, or stay)

Infinite tape (acts as read/write

memory)

State transition, tape
read/write, and head

movement

5(‘10, a) — (‘h,b, R), where
a is overwritten by b and head

moves right

3. Explain applications of Regular Expressions.
1. Lexical Analysis in Compiler Design
e Lexical analysis is the first phase of a compiler, where source code
is broken down into tokens, Regular expressions play a critical role
in defining the patterns for tokens.
2. grep in UNIX
e The grep command in UNIX is a powerful tool that uses regular
expressions to search text in files or streams. Here are some common
applications of grep:
3. Input Validation:

. Regular expressions are commonly used to validate user input in
forms and applications to ensure it meets certain criteria.

4. Data Extraction:

. Regex can extract specific information from text by identifying
patterns.

5. Search and Replace Operations:

. Regular expressions make search-and-replace operations more
flexible, allowing bulk modifications based on patterns rather than
exact matches.

4. Define Regular language.

A Regular Language is a type of formal language that can be recognized by
a finite automaton and can be defined using regular expressions. In
simpler terms, it is a language whose strings can be generated by applying
a specific set of rules, such as concatenation, union, and repetition (also
known as the Kleene star).

Examples of Regular Languages

. The set of all strings over the alphabet {0,1} that contain an even
number of 0s.

. The set of all strings over {a,b} that start with a and end with b.

5. Short note on Arden’s theorem.

Arden's Theorem is a fundamental theorem in the theory of regular
languages and automata, used to solve regular expressions for certain
types of equations. It provides a method to express the language accepted
by a finite automaton in terms of regular expressions, which is useful in
designing and analyzing automata.

Statement of Arden's Theorem

For any two regular expressions P and Q over an alphabet Z if R is a solution
to the equation:

R=Q+RP
then the solution can be expressed as:
R=QPx
where:
. +represents the union of languages,
. - represents concatenation,

. Pxisthe Kleene star of P, meaning zero or more occurrences of P.

Q.2. Write note on Chomsky Hierarchy.

(MU Dec. 2009, Dec. 2012, May 2013, May 2014, Dec. 2014, May 2015, Dec. 2016,
May 2017, Dec. 2017)

Ans: Chomsky Hierarchy

A grammar can be classified on the basis of production rules. Chomsky classified
grammars into the following types:

1. Type 3: Regular grammar
2. Type 2: Context free grammar
3. Type 1: Context sensitive grammar

4. Type 0: Unrestricted grammar.

No | Grammar | Grammar Accepted Language Accepted Automation
Type

1 Type 3 Regular grammar Regular Language Finite Automata (FA)

2 Type 2 Context free grammar | Context free Language | Pushdown Automata
(CFQ) (CFL) (PDA)

3 Type 1 Context sensitive | Context sensitive | Linear Bounded
grammar (CSG) Language (CSL) Automation (LBA)

4 Type 0 Unrestricted Grammar Recursively enumerable | Turing Machine (TM)

language (REL)

1. Type 3 or Regular Grammar

A grammar is called Type 3 or regular grammar if all its productions are of the
following forms:

A— ¢

A—a

A— aB

A—Ba
Where,a€Xand A, B€V.

A language generated by Type 3 grammar is known as regular language.

2. Type 2 or Context Free Grammar

A grammar is called Type 2 or context free grammar if all its productions are of
the following form A— o where A€ Vand a € (VUT) *.

Vis a set of variables and T is a set of terminals.

The language generated by a Type 2 grammar is called a context free language, a
regular language but not the reverse.

3. Type 1 or Context Sensitive Grammar

A grammar is called a Type 1 or context sensitive grammar if all its productions
are of the following form.

a—3
Where, 3 is atleast as long as a.
4. Type O or Unrestricted Grammar

Productions can be written without any restriction in a unrestricted grammar. If
there is production of the a— f3, then length of a could be more than length of 3.

Every grammar also is a Type 0 grammar.
A Type 2 grammar is also a Type 1 grammar

A Type 3 grammar is also a Type 2 grammar.

Q.3. Difference between moore machine and mealy machine

Ans:
No Moore Machine Mealy Machine
1 In moore machine, output symbol is In mealy machine, output symbol is
associated with each state associated with each transition
2 Output is dependent on state Output is dependent on state and input
3 Output Mapping: Output Mapping:
ANQD A A Qx Y DA

4 In this, if length of input sequence is n, | In this, if length of input sequence is n,
then the length of output sequence is | then the length of output sequence is
n+1 alson

5 Here we can get output on € Here we cannot get output on €

6 Example: Example:

Q.4. Difference between NFA and DFA:

DFA NFA

1 | DFA stands for Deterministic Finite | NFA stands for Nondeterministic Finite
Automata. Automata.

2 | DFA cannot use Empty String transition. | NFA can use Empty String transition.

3 | DFA is more difficult to construct. NFA is easier to construct.

4 | Time needed for executing an input string | Time needed for executing an input string is
is less. more.

5 | All DFA are NFA. Not all NFA are DFA.

6 | DFA requires more space. NFA requires less space then DFA.

7 | Dead state may be required. Dead state is not required.

8 | Backtracking is allowed in DFA. Backtracking is not always possible in NFA.

9 | Conversion of Regular expression to DFA | Conversion of Regular expression to NFA is

is difficult. simpler compared to DFA.

Q.5. Write Short Note On: Recursive and Recursively Enumerable Languages

(May 14,Dec 16) OR

Difference between Recursive and Recursively Enumerable Languages:

Comparison Recursive Language

Also Known as Turing decidable languages

In Recursive Languages, the Turing machine

accepts all valid strings that are part of the

Definition))
language and rejects all the strings that are
not part of a given language and halt.
(1) Haltand accept

States (2) Halt and Reject

Loop Finite Loop

Halting Halting Turing Machine

Accept (Turing machine) = L
g Reject (Turing machine) = L

Accept/ Reject))

Loop (Turing machine) = @@

¢ =null @ = null

Closed under all except homomorphism,
Closed under substitution, GSM mapping, and rational

transduction

context-sensitive language

Recursively enumerable language
Turing recognizable languages

In Recursively enumerable languages, the
Turing machine accepts all valid strings that
are part of the language and rejects all the
strings that are not part of the given language
but do not halt and starts an infinite
loop.

(3) Halt and accept
(4) Halt and Reject
(5) Never Halt (Infinite loop)

Infinite loops of machine are possible
Non Halting Turing Machine

Accept (Turing machine) = LReject (Turing
machine) + Loop (Turing machine) =

Closed under all except set difference, and

complementation.

RE languages or type-0 language

Q.6. State and prove Halting Problem or Short note on Halting Problem
(Dec15, Dec16)

Ans:

Input - A Turing machine and an input string w.

Problem - Does the Turing machine finish computing of the string w in a finite number
of steps? The answer must be either yes or no.

Proof - At first, we will assume that such a Turing machine exists to solve this problem
and then we will show it is contradicting itself. We will call this Turing machine as a
Halting machine that produces a ‘yes’ or ‘no’ in a finite amount of time. If the halting
machine finishes in a finite amount of time, the output comes as ‘yes’, otherwise as ‘no’.
The following is the block diagram of a Halting machine:

Input ——> Yes (HM halts on input w)
Halting

Machine

string

— No (HM does not halt on input w)

Now we will design an inverted halting machine (HM)’ as -

e IfHreturns YES, then loop forever.
e IfHreturns NO, then halt.

The following is the block diagram of an ‘Inverted halting machine’:

Infinite loop

il

Yes / \ /, —_\
—_— Qi (@)
Input Halting W N ot
string_’ Machine \/
—> No

Further, a machine (HM)2 which input itself is constructed as follows -

e [f (HM)Z2 halts on input, loop forever.
e Else, halt.

Here, we have got a contradiction. Hence, the halting problem is undecidable.

Q.7. Give formal definition of PDA / Mathematical Model of PDA (Dec16)

Ans:
i) PDA is used for recognizing context free language which is generated by
context free grammar.
ii) PDA is more powerful than finite automata because it has a stack which can be

used for remembering some information.
iii) Model of PDA is as follows:

_‘ 'IriputTnf)c a alblb]b]

Read b

ginite stote|
A conno| gback
| V.hl‘cdi'ﬂndpl_ n,b JZDE:

iv) PDA consists of finite set of states, i/p tape, read head and stack.
V) Depending on the stack, i/p symbol and stack top symbol:
- PDA can change the stack/remain in the same stack.
- PDA moves the head to right of current cell.
- PDA can perform some stack operations.
vi) PDA can be represented mathematically as follows: (7 tuples)
M=(Q>T,6, qo, Zo, F)
Q: the finite set of states
Y:: input alphabet
[': stack alphabet
Jo: initial state

Zo: initial stack top symbol
F: finite set of final states

6: transition function
8:QxYxI'>QxTI*

Q.8. State and explain power and limitation of turing machine. (Dec16)
Ans:
Power of Turing Machine:

» The turing machine has a great computational capabilities. So it can be used
as a general mathematical model for modern computers.

» Turing machine can model even recursively enumerable languages. Thus the
advantage of turing machine is that it can model all the computable
functions as well as the languages for which the algorithm is possible.

Limitations of turing machine:

» Computer scientists believe that a Turing machine encapsulates the idea of
computability. That is, if a function can be computed by any physical process, it
can be computed by a Turing machine. (This is known as the Church-Turing
thesis.)

» But we do know that many important functions are uncomputable. For
example:

- Determining if a program will ever halt on a given input

- Determining if two programs compute the same output

- Determining the size of the smallest program that computes a given
output (formally, this is known as Kolmogorov complexity)

Since none of these can be computed by a Turing machine, we believe that
they are uncomputable under any realizable model of computation.

Q.9. Write Short Note on Universal Turing Machine (Dec15)
Ans:

» Universal Turning Machine stimulates a Turning Machine.

» Universal Turing Machine can be considered as a subset of all the Turing machines,
it can match or surpass other Turing machines including itself.

» Programmable Turing Machine is called Universal Turing Machine

» Universal Turing Machine is like a single Turing Machine that has a solution to all
problems that is computable.

» It minimizes space complexity

» It contains a Turning Machine description as input along with an input string, runs
the Turning Machine on the input and returns a result.

» The transition functionis Q x T = Q x T x {L, R}, where Q is a finite set of states, T
is the tape of the alphabet

Q.10. Difference between pushdown automata and finite automata

Ans:

S.NO Pushdown automata finite automata

1. For Type-2 grammar we can design For Type-3 grammar we can design finite
pushdown automata. automata.

2. Non - Deterministic pushdown automata | Non-Deterministic Finite Automata has same
has more powerful than Deterministic powers as in Deterministic Finite Automata.
pushdown automata.

3. Not every Non-Deterministic pushdown | Every Non-Deterministic Finite Automata is
automata is transformed into its | transformed into an equivalent Deterministic
equivalent Deterministic pushdown Finite Automata
Automata.

4. Context free languages can be recognized | Regular languages can be recognized by finite
by pushdown automata. automata.

5. Pushdown automata has the additional Finite Automata doesn’t has any space to store
stack for storing long sequence of | inputalphabets.
alphabets.

6. It gives acceptance of input alphabhets by | It accepts the input alphabets by going up to
going up to empty stack and final states. final states.

OR

S.NO Pushdown automata finite automata

1. PDA is more powerful than FA FA is less powerful as compare to PDA

2. It has additional memory in form of stack | It has no memory

3. PDA accepts CFG(Context Free Grammar) | FA accepts RL(Regular Language)

4, PDA is useful for parsing phase of FA is useful for lexical analysis phase of
compiler compiler

5. PDA transition based on current input or | FA transition based on current input and
current stack on the top of stack symbol current state.

Q.11. Describe Finite Automata (dec18)
Ans:
—>Finite Automata (FA) is the simplest machine to recognize patterns.

->The finite automata or finite state machine is an abstract machine that has five
elements or tuples.

-> A finite automaton is a collection of 5-tuple (Q, };, 6, q0, F), where:

1. Q: finite set of states

2. >:finite set of the input symbol
3. qO: initial state

4. F: final state

5. &: Transition function

—Ithas a set of states and rules for moving from one state to another but it depends upon
the applied input symbol.

- The following figure shows some essential features of general automation.

I4 I In | Input

States of
Automata

01 | O2 O, | Output

—>The above figure shows the following features of automata:

- Input

- Output

- States of automata
- State relation

- Outputrelation

—>FA is characterized into two types:

1) Deterministic Finite Automata (DFA)
2) Nondeterministic Finite Automata(NFA)

Q.12. Difference between DPDA and NPDA (explain npda - dec 18)

Ans:

S. DPDA (Deterministic Pushdown NDPA (Non-deterministic Pushdown

No Automata) Automata)

1. It is less powerful than NPDA. It is more powerful than DPDA.

2. It is possible to convert every DPDA to | It is not possible to convert every NPDA to a
a corresponding NPDA. corresponding DPDA.

3. The language accepted by DPDA is a
subset of the language accepted by
NDPA.

The language accepted by NPDA is not a
subset of the language accepted by DPDA.

4. The language accepted by DPDA is
called DCFL (Deterministic Context-
free Language) which is a subset of
NCFL (Non-deterministic Context-free
Language) accepted by NPDA.

The language accepted by NPDA is called
NCFL (Non-deterministic Context-free
Language).

Q. 16. Give formal definition of regular language. (Every year they ask this

question)

Ans:

UR.E. is used for specifying the
strings of Regular Language and
is defined as follows:

)Y s

i) ‘e’ §;ecif_iaés language {€}

fies language { }

iii) ‘a’ specifies language {a}
iv) i) R | S specifies Ly U L

i) R. S specifies Lg. L;
iii) R* specifies Lg* N dosure |

iv) R* specifies L;*

concatenation

positive closure

Q.17. Variants or Variations or Types of Turing Machine (Very IMP)
Ans:
Variants of Turing Machine are as follows:

1) Semi-infinite turing machine:

—>Ithas no cells on the left-hand side of the initial position and infinite cells on the right-
hand side of the initial position.

—>Here, head can only be move or is allowed to move in right hand side direction of the
initial position of the input on the tape.

2) Two way-infinite turing machine:

- The input and output tape is a two way indefinite tape i.e there are unlimited blank
cells on the left as well as on the right of the current non block portion on the tape

->Two way-infinite tape turing machine can be stimulated by Standard turing
machine(one way-infinite turing machine)

3) Multiple track turing machine:

- This turing machine has multiple tracks but a single tape head that reads and writes
on all tracks.

—> Also, for every single-track turing machine, there exists an equivalent multi-track
turing machine.

—> Multiple track turing machine can be stimulated by Standard turing machine.

Multiple Track Turing Machine:

4) Multiple tape turing machine:
—>It has multiple tapes and is controlled by a single head.

—>Multiple-tape turing machine is different from multi track turing machine but
expressive power is same.

- Multiple-tape turing machine is simulated by single-tape turing machine.

?

5) Multi Dimensional Turing Machine:

-1t has multi dimensional tape where head can move in any direction that is left,
right, up and down.

—> Multi dimensional turing machine can be stimulated by Standard turing machine.

6) Non deterministic turing machine:
- A non-deterministic Turing machine has a single, one-way infinite tape.

—>For a given state and input symbol has at least one choice to move (finite number
of choices for the next move), each choice has several choices of the path that it might
follow for a given input string.

—>A non-deterministic Turing machine is equivalent to the deterministic Turing
machine.

Q.18. Closure properties of regular language (State and explain any 5 --- 5 marks)
Ans:

Closure properties on regular languages are defined as certain operations on regular
language which are guaranteed to produce regular language.

Closure properties of regular languages are as follows:

1. Union

Intersection
Concatenation

Kleen closure
Complement

Reversal

Let difference operator
Homomorphism
Inverse homomorphism

O 0N W

1.Union:

If L1 and If L2 are two regular languages, their union L1 U L2 will also be regular.

le?
Li':’ian\ﬂ>0’j ClﬁdLZflLbnlh>o‘}
18- LavLe - {a”V i)n>o}ua1,,o
«reguia/\

2.Intersection:
If L1 and If L2 are two regular languages, their intersection L1 N L2 will also be regular.
%amp’c’
1= 4a™b”|n>0 and m>o’ and
12=4a™b" U b"a™ |n>0 andm>oy

L3 = 4 A Ol B2 -{a.mb“)nw cmdm>0“3
oune cldo 'rtaula)-

3.Concatenation:

If L1 and If L2 are two regular languages, their concatenation L1.L2 will also be regular.

4.Kleen closure:

If L1 is a regular language, its Kleene closure L1* will also be regular.

5.Complement:

If L(G) is a regular language, its complement L'(G) will also be regular. Complement of a
language can be found by subtracting strings which are in L(G) from all possible strings.

Q.19. Decision properties of regular language

Ans:

Testing Emptiness of Regular Languages:

» The emptiness question is whether there is any path from the start
state to some accepting state. If so, the language is non empty, while
if accepting states are all separated from the start state, then the
language is empty.

» Deciding whether we can reach an accepting state from the start state
is a simple instance of graph reachability.

Testing Membership in a Regular Language:

» Here the question is given a string w and a regular language L, isw in L.

» |If Lis represented by a DFA, simulate the DFA processing the string
input symbols w, beginning in the start state. If the DFA ends in an
accepting state, the answer is yes otherwise the answer is no.

» If L has any other representation besides a DFA we could convert to a
DFA and then run the test above.

Testing Equivalence of States:

» Tofind states that are equivalent, we try to find pairs of states that are
distinguishable.Any pair of states that we do not find distinguishable
are equivalent.

» The table filling algorithm is a recursive discovery of distinguishable pairsin a
DFA.

Testing Equivalence of Regular Languages:

» The table filling algorithm gives us an easy way to test if two regular
languages are thesame. Suppose L and M are two languages
represented by their respective DFA’s.

» Now test if the start states of the two original DFA’s are equivalent,
using the tablefilling algorithm. If they are equivalent, then L=M
and if not then L # M.

Q.20. Post Correspondence Problem

Ans:

Post’s Correspondence Problem (PCP) was first introduced by Emil Post in 1946. Later, the
problem was found to have many applications in the theory of formal languages.

The problem over an alphabet X belongs to a class of yes / no problems and is stated as follows

Consider the two lists x = (X1....Xn), y = (y1......... yn) of nonempty strings over
an alphabet £ = (0, 1). The PCP is to determine whether or not there exist i1 .
., im, where 0 <i;<n, such that x1, Xin =Yiy,.ccu.. Yim

Note :

1) The indices i's need not be distinct and m may be greater than n.

2) if there exists a solution to PCP, there exists infinitely many solutions
3) PCP is undecidable.

4. Write a short note on: Recursive and Recursively
enumerable languages.

Recursive Languages

. Definition: A language is recursive (or decidable) if there
exists a Turing Machine that can always determine, in a finite
amount of time, whether any given string belongs to the
language (accepts) or does not belong (rejects).

. Properties:

. Forarecursive language, the Turing Machine will always
halt with a definitive answer (accept or reject) for any input.

- Recursive languages are the class of languages that can be
fully "decided" by a Turing Machine.

. Example: The set of all even numbers in binary form is
recursive since there is a clear algorithm (ending in zero) to
determine if a binary number is even.

Recursively Enumerable (RE) Languages

. Definition: A language is recursively enumerable (RE) if there
exists a Turing Machine that will accept any string in the

language but may either reject or run indefinitely for strings not
in the language.

. Properties:

- For an RE language, the Turing Machine is guaranteed to
halt if the string is in the language (accept), but it may
never halt if the string is not in the language.

- RE languages are also known as semi-decidable because
the Turing Machine may not provide a definitive answer
(halt) for strings not in the language.

. Example: The halting problem (determining if a given Turing
Machine halts on a given input) is RE because, if the machine
halts, there’s a way to verify it, but if it doesn’t halt, there’s no
guaranteed way to detect non-halting.

Rice's Theorem is an important result in the theory of
computation, which states that any non-trivial property of the

language recognized by a Turing Machine is undecidable.

Ol

Key Points of Rice’s Theorem

1.Non-trivial Property: A property is considered non-trivialif it is
true for some Turing Machines and false for others. In other
words, the property does not apply universally to all TMs or
none at all.

2.Undecidability: Rice’s Theorem shows that it is impossible to
design an algorithm (or Turing Machine) that can determine any
non-trivial property of the language a Turing Machine
recognizes. This means that for properties like "the language
recognized by a TM is empty," "the language is finite," or "the

language includes a specific string," no algorithm can decide
them for all possible Turing Machines.

3.Scope of the Theorem: Rice's Theorem applies to properties of
the language recognized by a Turing Machine, not properties
of the machine itself (like the number of states or transitions).

Examples of Properties Covered by Rice’s Theorem
. Whether a Turing Machine accepts all strings.
. Whether a Turing Machine’s language is regular or context-free.

3. Explain applications for PDA.

1) Syntax Parsing in Compilers: PDAs are used to parse context-free
grammars, which helps in analyzing the syntax of programming
languages to check if code is written correctly.

2) Language Recognition: PDAs can recognize context-free languages, like
checking if parentheses are balanced in an expression (e.g., in
mathematical equations or code blocks).

3) Natural Language Processing (NLP): PDAs help model simple
structures in human languages, such as basic sentence structures and
nested phrases, which aids in understanding and processing human
languages.

4) XML Parsing: XML documents have a nested structure that can be
validated using PDAs, ensuring the correct opening and closing of tags.

5) Arithmetic Expression Evaluation: PDAs can be used to evaluate
arithmetic expressions by parsing and evaluating expressions with
nested structures, such as ((2+3)*4).

5) Design of Interactive Systems: PDAs model systems with nested or
recursive states, like navigation systems with menus and submenus.

