DL MOST IMP MODULEWISE

MODULE 1 — FUNDAMENTALS OF NEURAL NETWORKS
MOST REPEATED / EXPECTED
1 EXPLAIN MULTILAYER PERCEPTRON (MLP) ARCHITECTURE AND WORKING.
2 WHAT ARE FEEDFORWARD NEURAL NETWORKS?
3 WHAT IS GRADIENT DESCENT? EXPLAIN WITH EXAMPLE.
4 EXPLAIN THREE CLASSES OF DEEP LEARNING (SUPERVISED, UNSUPERVISED, REINFORCEMENT).
5 EXPLAIN REPRESENTATION POWER OF MLP AND FEEDFORWARD NNS.

✓ MOST LIKELY: MLP + GRADIENT DESCENT COMBO QUESTION.

MODULE 2 — TRAINING, OPTIMIZATION & REGULARIZATION WEIGHTAGE: HIGHEST (2 QUESTIONS COMPULSORY IN EVERY PYQ) MOST REPEATED / EXPECTED 1 EXPLAIN BACKPROPAGATION ALGORITHM WITH EQUATIONS. 2 COMPARE OPTIMIZATION ALGORITHMS - MOMENTUM, RMSPROP, ADAM. 3 EXPLAIN REGULARIZATION TECHNIQUES - DROPOUT, BATCH NORMALIZATION, EARLY STOPPING. 4 EXPLAIN ACTIVATION FUNCTIONS (SIGMOID, TANH, RELU, SOFTMAX). 5 WHAT ARE L1 AND L2 REGULARIZATION? **6** EXPLAIN OVERFITTING AND BIAS-VARIANCE TRADEOFF.

✓ MOST LIKELY:

BACKPROPAGATION (ALWAYS THERE)

REGULARIZATION (DROPOUT/BATCHNORM/WEIGHT DECAY)

OPTIMIZERS COMPARISON

- 1 EXPLAIN AUTOENCODER ARCHITECTURE (ENCODER-DECODER).
- **2** EXPLAIN UNDERCOMPLETE AND OVERCOMPLETE AUTOENCODERS.
- 3 EXPLAIN DENOISING AUTOENCODER WITH WORKING.

WHAT ARE APPLICATIONS OF AUTOENCODERS?
5 EXPLAIN REGULARIZATION IN AUTOENCODERS.
✓ MOST LIKELY: AUTOENCODER ARCHITECTURE OR TYPES (UNDERCOMPLETE, DENOISING).
MODULE 4 — CNN (SUPERVISED LEARNING)
1 EXPLAIN CNN ARCHITECTURE IN DETAIL.

2 EXPLAIN CONVOLUTION & POOLING OPERATIONS WITH

EXAMPLES.

- 3 COMPARE FULLY CONNECTED NN AND CNN.
- 4 EXPLAIN LENET / ALEXNET / RESNET ARCHITECTURE.
- **5** DEFINE PADDING, STRIDE, FILTER SIZE AND GIVE OUTPUT FORMULA:

$$O = FRAC\{(I - F + 2P)\}\{S\} + 1$$

✓ MOST LIKELY:

CNN ARCHITECTURE (Q2 FROM DEC 2023, JUNE 2025, AND MAY 2024 PYQS)

LENET OR RESNET (1 MODERN CNN ARCHITECTURE ALWAYS APPEARS).

	MODULE 5 — RECURRENT NEURAL NETWORKS (RNN)
(a)	WEIGHTAGE: 1 MAJOR QUESTION EVERY PAPER
© 1	MOST REPEATED / EXPECTED
1]	EXPLAIN RNN ARCHITECTURE WITH DIAGRAM AND EQUATIONS.
_	EXPLAIN LSTM ARCHITECTURE AND HOW IT SOLVES THE ANISHING GRADIENT PROBLEM.
3]	EXPLAIN GRU (GATED RECURRENT UNIT) ARCHITECTURE.
4]	EXPLAIN VANISHING & EXPLODING GRADIENT PROBLEM.
5]	EXPLAIN BACKPROPAGATION THROUGH TIME (BPTT).
V I	MOST LIKELY:

RNN + LSTM COMBO QUESTION

VANISHING/EXPLODING GRADIENTS SHORT NOTE

- MODULE 6 RECENT TRENDS & APPLICATIONS
- WEIGHTAGE: 1 QUESTION EVERY PAPER (FINAL QUESTION)

- 1 EXPLAIN GAN (GENERATIVE ADVERSARIAL NETWORK) ARCHITECTURE IN DETAIL.
- 2 WRITE GAN FORMULA:

 $\label{eq:min_G MAX_D V(D, G) = E_{X SIM P_{DATA}(X)}[\LOG D(X)] + E_{Z SIM P_Z(Z)}[\LOG(1 - D(G(Z)))]} \\$

- WRITE A SHORT NOTE ON DEEPFAKE.
- **5** EXPLAIN ISSUES IN VANILLA GAN (INSTABILITY, MODE COLLAPSE).

✓ MOST LIKELY:

GAN ARCHITECTURE + FORMULA (REPEATED IN 3 OUT OF 4 PAPERS).

DEEPFAKE (1-LINE OR SUB-QUESTION).

- ✓ 1. MLP ARCHITECTURE AND WORKING (MODULE 1)
- ☑ 2. GRADIENT DESCENT (MODULE 1)
- ☑ 3. BACKPROPAGATION WITH EQUATIONS (MODULE 2)
- ✓ 4. COMPARE OPTIMIZERS (MOMENTUM, RMSPROP, ADAM)

 (MODULE 2)
- ☑ 6. AUTOENCODER ARCHITECTURE (MODULE 3)
- ☑ 7. CNN ARCHITECTURE AND WORKING (MODULE 4)
- ☑ 8. LENET / RESNET ARCHITECTURE (MODULE 4)

- ☑ 9. RNN ARCHITECTURE (MODULE 5)
- ✓ 10. LSTM ARCHITECTURE (MODULE 5)
- ✓ 11. GAN ARCHITECTURE + FORMULA (MODULE 6)
- ☑ 12. APPLICATIONS OF GAN / DEEPFAKE (MODULE 6)