Times asked [AINES

TCS Theory Question bank

1.Basic concepts and Finite Automata
1. Explain applications of Finite Automata(FA).
2. Discuss difference in transition function of FA, PDA and TM.
3. Differentiate between FA, PDA and TM.
4. Compare and contrast Moore and Mealy machines.
5
6
7

. Differentiate between DFA and NFA.
. Short note on Moore and Mealy machine.
. Explain Finite State Machine(FSM).
2. Regular Expressions and Languages
. Explain and give formal definition of pumping lemma for regular language.
. Short note on Decision properties of Regular language.
. Explain applications of Regular Expressions.

. Short note on Arden’s theorem.
. What are the closure properties of RL.
3. Grammars

1
2
3
4. Define Regular language.
5
6

. Write a short note on Chomsky Hierarchy with an example.
. Steps for converting CFG to CNF.
4. Pushdown Automata (PDA)

N

. Explain the ways of acceptance by a PDA.
. Differentiate between PDA and NPDA.
. Explain applications for PDA.
. Write a short note on: Definition and working of PDA.
. Explain non-deterministic PDA.
5. Turing machine (TM)

g b~ WOIN =

—

. Write a short note on: Variants of Turing machines.
2. Explain applications for TM.

3. Write a short note on: Universal Turing machine.

6. Undecidability

1. Write a short note on: Post Correspondence problem.
2. Write a short note on: TM Halting problem.

3. Write a short note on: Recursive and Recursively enumerable languages.
4. Write a short note on: Rice’s theorem.

4 times
3times
2 times

1 time

TCS Theory Answer bank

1.Basic concepts and Finite Automata

1. Explain applications of Finite Automata(FA).

Finite automata are used for solving several common types of computer algorithms.
Some of them are :

(i) Design of digital circuit
(ii) String matching
(iii) Communication protocols for information exchange.

(iv) Lexical analysis phase of a compiler.
Finite automata can work as an algorithm for regular language. It can be used for
checking whether a string we L, where L is a regular language. ‘

v. Text Search and Pattern Matching
vi. Spell Checkers

vii. Regular Expression Matching

viii. Natural Language Processing (NLP)

2. Discuss difference in transition function of FA, PDA and TM.

Differences in Transition Functions

Aspect

Form of
Transition
Function

Inputs

Outputs

Memory Used

Operations

Example

Transition

Finite Automaton
(FA)

0:QxX—>Q

Current state and

input symbol

Next state

No memory (only

states)

State transition
based on input

symbol

d(q0,a) = ¢

Pushdown Automaton (PDA)

0:QxTXxI'—>QxI™

Current state, input symbol,

and top of stack symbol

Next state and stack operation

(push, pop, or no change)

Stack memory (last-in-first-out,
or LIFO)

State transition, stack
operations based on input

symbol and stack top

5(‘10, a, X) = (q1, ’y), where
X is popped and 4 is pushed

Turing Machine (TM)

0:QxI'>Q xI'x
{L,R, S}

Current state and tape symbol

Next state, symbol to write on
tape, and head movement

(left, right, or stay)

Infinite tape (acts as read/write

memory)

State transition, tape
read/write, and head

movement

5(q0,@) = (¢1,b, R), where
a is overwritten by b and head

moves right

3. Differentiate between FA, PDA and TM.

Feature

Memory
Computational
Power

Input Alphabet

Transition Function

Tape/Stack

Operations

Head Movement

Deterministic vs.

Non-Deterministic

Finite Automaton (FA)

No additional memory

Recognizes regular

languages

Finite alphabet, denoted
as X

Depends on the current

state and input symbol

Accepts or rejects based

on final state

No tape or stack

operations

Not applicable

Has both Deterministic FA
(DFA) and Non-
Deterministic FA (NFA)

Pushdown Automaton
(PDA)

Has a stack (Last-In-First-

Out structure)

Recognizes context-free

languages

Finite alphabet, denoted as

Y

Depends on the current
state, input symbol, and

stack symbol

Accepts or rejects based on

final state and stack content

Can push to or pop from
the stack

Not applicable

Has both Deterministic PDA
(DPDA) and Non-
Deterministic PDA (NPDA)

Turing Machine (TM)

Has an infinite tape
(both read and write)

Recognizes recursively

enumerable languages

Finite alphabet,
denoted as X

Depends on the current

state and tape symbol

Accepts, rejects, or
loops based on tape

and state

Can read from, write to,
and move along the

tape
Can move left, right, or

stay on the tape

Turing Machines are
usually non-

deterministic

Acceptance Criteria

Examples of Use

Limitations

Accepted if reaches an

accepting state

Used for lexical analysis,

Cannot handle nested

structures

Accepted if reaches an
accepting state with an

empty stack

Used for parsing

Cannot recognize
languages requiring

multiple stacks

Accepted if reaches an

accepting state

Used for general

simulating algorithms

Can perform any
computation that a real

computer can

4. Compare and contrast Moore and Mealy machines.

Parameter
Output Association

Equivalence

Number of States

Transition Function

Ease of
Implementation
Output Timing

Design Complexity

Flexibility

Mealy Machine
Output is associated with transitions

There is an equivalent Moore machine for every

Mealy machine

Requires fewer states as output is transition-
based

Transition function: 4 : ¥ X Q — Q
Output function: O : £ X Q — O

Seldom implemented directly in circuits or

programs

Output can change immediately with input

changes, even within the same state

Generally more complex due to output

variations on transitions

More flexible in generating different outputs for

the same state with different inputs

5. Differentiate between DFA and NFA.

Moore Machine
Output is associated with states

There is an equivalent Mealy

machine for every Moore machine

Often requires more states as

each state has a fixed output

Transition function: d : X X

Q—-Q

Output function: O : Q — O

Easier to implement in circuits or

programs

Output changes only on state

transitions

Simpler design as outputs depend

only on states

Less flexible, as outputs are

determined solely by states

Parameter

NFA

DFA

Transition

Non-deterministic.

Deterministic

No. of states.

NFA has fewer number of states.,

More, if NFA contains Q states
then the corresponding DFA will

have < 2Q states.

Power NFA is as powerful as a DFA DFA is as powerful as an NFA
Design Easy to design due to Relatively, more difficult to
non-determinism. design as transitions are
deterministic.
Acceptance | It is difficult to find whether w € L as | Itis easy to find whether w € L as

there are several paths. Backtracking is
required to explore several parallel

paths.

transitions are deterministic.

DFA NFA

1 | DFA stands for Deterministic Finite | NFA stands for Nondeterministic Finite
Automata. Automata.

2 | DFA cannot use Empty String transition. | NFA can use Empty String transition.

3 | DFA is more difficult to construct. NFA is easier to construct.

4 | Time needed for executing an input string | Time needed for executing an input string is
is less. more.

5 | All DFA are NFA. Not all NFA are DFA.

6 | DFA requires more space. NFA requires less space then DFA.

7 | Dead state may be required. Dead state is not required.

8 | Backtracking is allowed in DFA. Backtracking is not always possible in NFA.

9 | Conversion of Regular expression to DFA | Conversion of Regular expression to NFA is
is difficult. simpler compared to DFA.

6. Short note on Moore and Mealy machine.
Moore Machine:
« InaMoore machine, the output depends only on the current state of the machine.

« Each state in a Moore machine has a fixed output, so the output only changes when the
machine transitions to a different state.

« Example: Traffic light controller, where each light state (green, yellow, red) has a fixed
output.

Mealy Machine:
« InaMealy machine, the output depends on the current state and the current input.

« This allows Mealy machines to potentially produce different outputs even while in the
same state, based on varying inputs.

« Example: Serial data transmission, where the output changes immediately in response to
different inputs.

Steps for Converting a Moore Machine to a Mealy Machine
1. Identify States and Outputs:
o Listthe states and the fixed outputs for each state in the Moore machine.
2. Associate Outputs with Transitions:
o Foreach state and its outgoing transitions, create corresponding Mealy transitions.

o The output for each Mealy transition will be the same as the output of the Moore
state it’s coming from.

3. Adjust Output for Each Input Condition:

o If a state in the Moore machine has different outputs based on input conditions,
modify each Mealy transition to have the appropriate output for each input.

4. Remove Extra States (if applicable):

o Since Mealy machines can have fewer states due to their output flexibility, combine
states if possible to reduce the machine's size.

5. Verify:

o Ensure that the Mealy machine behaves identically to the Moore machine.

7. Explain Finite State Machine(FSM).
A Finite State Machine (FSM) is a computational model used to design and describe the
behaviour of systems that have a finite number of states. FSMs are widely used in computer

science, digital circuit design, and various fields where systems have predictable, stepwise
behaviours.

Types of Finite State Machines
1. Deterministic Finite Automaton (DFA):
o InaDFA, each state has a unique transition for each possible input.

o This means that from any given state, an input can lead to only one specific next
state.

2. Non-Deterministic Finite Automaton (NFA):

o Inan NFA, a state can have multiple transitions for the same input, leading to
different possible next states.
o NFAs are more flexible but can be more complex to analyze.
3. Moore Machine:
o Atype of FSM where the output depends only on the current state, not the input.
o The output changes only when the state changes.
4. Mealy Machine:
o Atype of FSM where the output depends on both the current state and the current
input.

o This allows the output to respond more immediately to input changes.

2. Regular Expressions and Languages

1. Explain and give formal definition of pumping lemma for regular language.

The Pumping Lemma is a fundamental property of regular languages, used to prove that certain
languages are not regular. If a language is regular, it must satisfy the pumping lemma. If we can
show that a language does not satisfy the pumping lemma, we can conclude that it is not
regular.

—aiaazy
Let L be a regular language and M = (Q, Z, §, qo» F) be a finite automata with n-states

Language L is accepted by m. Let w € L and | ®l > n, then ® can be written as xyz, where
i Iyl>0
(i) Ixyl<n

(ili) xy'zeL foralli>0 here yi denotes that y is repeated or pumped i times.

2. Short note on Decision properties of Regular language.

Decision properties of regular languages are properties that allow us to determine certain
characteristics or make decisions about regular languages using algorithmic methods. These
properties make regular languages particularly useful, as they enable us to analyse and
manipulate languages in efficient ways.

A problem that has a decision algorithm is called decidable. A decision algorithm
terminates with yes or no answer. Some of the decision problems are given below :

L. Is a regular set empty ? — Emptiness property.

Whether a finite automata accepts a finite number of strings ? — Finiteness property,

19

Whether a finite automata accepts an infinite number of strings ? — Infiniteness Property,

(93]

Decision Algorithm for emptiness :

° Finite automata will fail to accept any string if it does not have a final state.

s Finite automata will fail to accept a string if none of its accepting states is reachable
from the initial state.

Decision algorithm for finiteness / infiniteness :

The set of strings accepted by a finite automata M with n states is finite if and only if the
finite automata accepts only strings of length less than n.

The set of strings accepted by a finite automata M with n states is infinite if and only if it
accepts some string ® such thatn <l | < 2n.

3. Explain applications of Regular Expressions.
1. Lexical Analysis in Compiler Design
e Lexical analysis is the first phase of a compiler, where source code is broken down into
tokens, Regular expressions play a critical role in defining the patterns for tokens.

2. grep in UNIX
e The grep command in UNIXis a powerful tool that uses regular expressions to search text
in files or streams. Here are some common applications of grep:
3. Input Validation:

« Regular expressions are commonly used to validate user input in forms and applications
to ensure it meets certain criteria.

4. Data Extraction:
« Regex can extract specific information from text by identifying patterns.
5. Search and Replace Operations:

« Regular expressions make search-and-replace operations more flexible, allowing bulk
modifications based on patterns rather than exact matches.

4. Define Regular language.

A Regular Language is a type of formal language that can be recognized by a finite automaton
and can be defined using regular expressions. In simpler terms, it is a language whose strings
can be generated by applying a specific set of rules, such as concatenation, union, and
repetition (also known as the Kleene star).

Examples of Regular Languages
o The set of all strings over the alphabet {0,1} that contain an even number of Os.
« The set of all strings over {a,b} that start with a and end with b.

5. Short note on Arden’s theorem.

Arden's Theorem is a fundamental theorem in the theory of regular languages and automata,
used to solve regular expressions for certain types of equations. It provides a method to express
the language accepted by a finite automaton in terms of regular expressions, which is useful in
designing and analyzing automata.

Statement of Arden's Theorem
For any two regular expressions P and Q over an alphabet 2 if R is a solution to the equation:
R=Q+RP
then the solution can be expressed as:
R=QPx*
where:
« +representsthe union of languages,
e -represents concatenation,

o P=xisthe Kleene star of P, meaning zero or more occurrences of P.

6. What are the closure properties of RL.

If an operation on regular languages generates a regular language then we say that the
class of regular languages is closed under the above operation. Some of the important closu®
properties for regular languages are given below.

1. Union

2. Difference
3

; Concatenation
4. Intersection
5. Complementation
6. Kleene star
7. Transpose or reversal.,

3. Grammars

1. Write a short note on Chomsky Hierarchy with an example.

According to Noam Chomosky, there are four types of grammars - Type 0, Type 1, Type 2, and Type 3. The following table shows how they
differ from each other -

Grammar Type Grammar Accepted Language Accepted Automaton

Type O Unrestricted grammar Recursively enumerable language Turing Machine
Type 1 Context-sensitive grammar Context-sensitive language Linear-bounded automaton
Type 2 Context-free grammar Context-free language Pushdown automaton
Type 3 Regular grammar Regular language Finite state automaton

Recursively EnumeraN

/
Context-Sensitive \

. \
/ \
" Context - Free\ “ /

\
\

\ | “\ /

[Regular

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side
consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form X — a or X — aY¥Y
where X, Y € N (Non terminal)
and ae€T(Terminal)

The rule S — ¢ is allowed if S does not appear on the right side of any rule.
Example

X =+ €
X = a| ay

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form A — y

where A € N (Non terminal)

and vy € (T u N)* (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

- X a
+ a

-+ aX
-+ abc
- E

X X X X n

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form
aAB—ayp

where A € N (Non-terminal)

and aq, B,y € (T U N)* (Strings of terminals and non-terminals)

The strings a and B may be empty, but y must be non-empty.

The rule S — € is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a
linear bounded automaton.

Example

AB - AbBc
A » bcA
B=-+b

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar
including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of a — B where a is a string of terminals and nonterminals with at least one non-terminal and a cannot be
null. B is a string of terminals and non-terminals.

Example

S - ACaB
Bc » acB
CB » DB
aD » Db

2. Steps for converting CFG to CNF.
Steps

1. Remove Null (Epsilon) Productions:
e Eliminate productions of the form A — € (where € is the empty string).

e For each rule that contains A on the right side, create new rules without A by replacing A

with €, ensuring all combinations are covered.
2. Remove Unit Productions:
e Remove productions of the form A — B (where both A and B are non-terminals).
e Replace these rules by adding new productions from B to A, copying all rules of B to A.
3. Remove Useless Symbols:

e Remove any non-terminals that are unreachable from the start symbol or do not lead to a

terminal.
e This ensures only necessary symbols remain in the grammar.
4. Convert to Binary Rules:

e For productions with more than two non-terminals on the right (e.g, A — BC D), break

them down into binary productions by introducing new non-terminals.
e Forinstance, replace A —+ BCD with A — BX and X — CD.
5. Convert Terminals in Mixed Rules:

e If a production has a mix of terminals and non-terminals (e.g., A — aB), replace the

terminal with a new non-terminal that produces just that terminal.

e For example, if a is a terminal, introduce A" — a and replace a in the original rule with A’.

4. Pushdown Automata (PDA)
1. Explain the ways of acceptance by a PDA.

A language L can be accepted by a PDA in two ways :
1. Through final state.
2. Through empty stack.
It is possible to convert between the two classes.
1. From final state to empty stack.
2. From empty stack to final state.

- PDADby = ~ PDAby -
\Smpty stack _final state

Fig. 6.4.1 : Equivalence of two PDAs
6.4.1 Acceptance by Final State

Let the PDA,M =(Q, %, T, 3, q;, 2, F) then the language accepted by M through a final
state is given by : ' :

LM) = {w | Gy Wi 20) -_:Z @, e,"oc)}

Where the state q, € F. a, the final contents of the stack are irrelevant as a string is
accepted through a final state.

6.4.2 Acceptance by Empty Stack

Let the PDA, M = (Q, Z, T, §, q, 2 ¢) then the language accepted through an empty
stack is given by :

LM) = {w @0 %202 @ e)}

Where q, is any state belonging to Q and the stack becomes empty on application of

input string w.

B

2. Differentiate between PDA and NPDA.

Feature PDA (Deterministic) NPDA (Nondeterministic)

Definition Has a unique transition per input. Can have multiple transitions per input.

Transitions Deterministic transitions. Nondeterministic transitions.

Acceptance Accepts by final state only. Accepts by final state or empty stack.

Power Less powerful; recognizes a subset of More powerful; recognizes all context-

context-free languages. free languages.

Example Recognizes a™b". Recognizes a™b"c".

Languages

Implementation Simpler and easier to design. More complex due to nondeterminism.

Closure Closed under union, but not intersection Closed under union, but not intersection

Properties or complement. or complement.

3. Explain applications for PDA.

Syntax Parsing in Compilers: PDAs are used to parse context-free grammars, which helps in
analyzing the syntax of programming languages to check if code is written correctly.
Language Recognition: PDAs can recognize context-free languages, like checking if
parentheses are balanced in an expression (e.g., in mathematical equations or code blocks).
Natural Language Processing (NLP): PDAs help model simple structures in human
languages, such as basic sentence structures and nested phrases, which aids in
understanding and processing human languages.

XML Parsing: XML documents have a nested structure that can be validated using PDAs,
ensuring the correct opening and closing of tags.

Arithmetic Expression Evaluation: PDAs can be used to evaluate arithmetic expressions by
parsing and evaluating expressions with nested structures, such as ((2+3)*4).

Design of Interactive Systems: PDAs model systems with nested or recursive states, like
navigation systems with menus and submenus.

4. Write a short note on: Definition and working of PDA.
bbb el TAD TR A B

A pushdown automata M is defined as 7-tuple :

M = (Q’ Z’ F, 8’ q0’ ZO’ F)

Where,

The set of states

Input alphabet
Stack symbols

The transition function is a transifion form Qx

Cueg)x *
q, € Qs the initial state)X T toQxT

m e oo MO
1

F ¢ Qs the set of final states

Zy = Aninitial stack symbol

5. Explain non-deterministic PDA.

A Non-deterministic Pushdown Automaton (NPDA) is a type of automaton that processes
input strings using both a stack and non-deterministic transitions. Non-determinism allows the
NPDA to make multiple possible moves at each step based on the current input symbol, stack
top, and current state. This capability makes NPDAs more powerful than deterministic PDAs
(DPDASs) because they can recognize a broader class of languages, specifically all context-free
languages (CFLs).

A pushdown automata M is defined as 7-tuple : R -
M = (QZXT,53,q,z,F)
Where,
Q = The set of states
¥ = Ihput alphabet
I' = Stack symbols
8 = The UatlsitiorT function is a transifion formQx (T u e)X T to QX ™
q, = qp€ Qs the initial state
F = Fg Qis the set of final states

Zy = Aninitial stack symbol

6. Turing machine (TM)

Two-Way Infinite Turing Machine: A Turing Machine with an infinite tape extending in both
directions, allowing the head to move left or right indefinitely.

eee ala|b|bla|b|b] |a eee

Multitape Turing Machine: Has multiple tapes, each with its own independent tape head,
enabling more complex operations by accessing different tapes simultaneously.

~ . k separate heads

Tape 1

Tape 2.

Tape k

Multitrack Turing Machine: Uses a single tape divided into multiple tracks, allowing it to read or
write multiple symbols at the same position on each track.

/ at one step.

Track 1

Track 2

Track k

............

Multihead Turing Machine: Has multiple heads on a single tape, each head can read or write
independently, allowing it to access different parts of the tape simultaneously.

Control Unit
Multihead
™
Head 1_~Head Head 3 ead 4
24 a b c d e f g |h

Nondeterministic Turing Machine: Can make multiple possible moves from a given
configuration, branching into multiple computation paths to explore all possibilities

simultaneously.
D,

Input tape
|D1 ID2 |03
Marker tape S

Scratch tape

2. Explain applications for TM.

1) Understanding Computability: TMs help define what problems can be solved by any
machine, setting the basis for identifying computable vs. non-computable problems.

2) Algorithm Design: TMs offer a basic model for designing and analyzing algorithms,
helping to break down complex computations into simple steps.

3) Complexity Theory: TMs are used to classify problems based on their time and space
requirements, helping identify easy vs. hard problems in terms of resources.

4) Universal Computation Model: The Universal Turing Machine concept shows that one
machine can simulate any other, which is foundational for general-purpose computing.

5) Formal Language Processing: TMs serve as a model for processing languages, aiding in
understanding and developing parsers and compilers for programming languages.

3. Write a short note on: Universal Turing machine.

e Universal Turning Machine stimulates a Turning Machine.

e Universal Turing Machine can be considered as a subset of all the Turing machines, it can
match or surpass other Turing machines including itself.

e Programmable Turing Machine is called Universal Turing Machine

e Universal Turing Machine is like a single Turing Machine that has a solution to all problems
that is computable.

e |t minimizes space complexity

e [t contains a Turning Machine description as input along with an input string, runs the
Turning Machine on the input and returns a result.

e The transition functionisQ xT~> Q x T x{L, R}, where Q is a finite set of states, T is the tape
of the alphabet

6. Undecidability
1. Write a short note on: Post Correspondence problem.

Definition of post correspondence problem (PCP) : Let A and B be two non-empty lists of
strings over 2.. A and B are given as below : :

A = {x Xy X3... X}

B = {yny»¥s--- ¥}

We say, there is a post correspondence between A and B if there is.a sequence of one or
more integers i, j, k ...m such that :

The string x; x; ... X, is equal to y; y'j ssv Yiip

Example 1
Find whether the lists

M = (abb, aa, aaa) and N = (bba, aaa, aa)
have a Post Correspondence Solution.

Solution
X| X: X3
abb aa g
N bba aaa aa
Here,

X,X,X; = ‘aaabbaaa’
and y,y,y; = ‘aaabbaaa’
We can see that

XX X3 = Y2Y1Y3 '
Hence, the solutionisi=2,j=1, and k = 3.

2. Write a short note on: TM Halting problem.

The halting problem of a Turing machine states :

Given a Turing machine M and an input ® to the machine M, determine if the
machine M will eventually halt when it is given input ©.

Halting problem of a Turing machine is unsolvable.

Step 1: Let us assume that the halting problem of a Turing machine is solvable. There exists
a machine H,(say). H, takes two inputs :

1.
2

A string describing M.
An input ® for machine M.

H; generates an output “halt” if H, determines that M stops on input ®; otherwise H
outputs “loop”. Working of the machine H, is shown below.

-M—v o F—»halt
W H1
—____+—>loop

Step 2: Let us revise the machine H, as H, to take M as both inputs and H, should be able to

determine if M will halt on M as its input. Please note that a machine can be
described as a string over 0 and 1.

M —}— halt
I Ha
———>loop

Step 3: Let us construct a new Turing machine H, that takes output of H, as input and does
the following : e

1. If the output of H2 is “loop” than H3 halts.
2. If the output of H, is “halt” than H; will loop forever.

—'VI': a;.H:-ga—-bhalt — Machine Hg loops forever
S’:ﬁ:v.a,i(

loop — Machine Hj halts

H, will do the opposite of the output of H,.
Step 4: Let us give Hj itself as inputs to H,.

Hg 3{,{,;:
| +Ha:
R ;Q

LT

If H, halts on Hj; as input then Hy would loop (that is how we constructed it).
If H, loops forever on Hy as input H; halts (that is how we constructed it).
In either case, the result is wrong.

Hence,
H, does not exist.
If H, does not exist than H, does not exist.

3. Write a short note on: Rice’s theorem.
Rice's Theorem is an important result in the theory of computation, which states that any non-
trivial property of the language recognized by a Turing Machine is undecidable.

Key Points of Rice’s Theorem

1. Non-trivial Property: A property is considered non-trivial if it is true for some Turing
Machines and false for others. In other words, the property does not apply universally to all
TMs or none at all.

2. Undecidability: Rice’s Theorem shows that it is impossible to design an algorithm (or
Turing Machine) that can determine any non-trivial property of the language a Turing
Machine recognizes. This means that for properties like "the language recognized by a TM
is empty," "the language is finite," or "the language includes a specific string," no algorithm
can decide them for all possible Turing Machines.

3. Scope of the Theorem: Rice's Theorem applies to properties of the language recognized
by a Turing Machine, not properties of the machine itself (like the number of states or
transitions).

Examples of Properties Covered by Rice’s Theorem

« Whether a Turing Machine accepts all strings.

« Whether a Turing Machine’s language is regular or context-free.

4. Write a short note on: Recursive and Recursively enumerable languages.

Recursive Languages

« Definition: Alanguage is recursive (or decidable) if there exists a Turing Machine that can
always determine, in a finite amount of time, whether any given string belongs to the
language (accepts) or does not belong (rejects).

« Properties:

o Forarecursive language, the Turing Machine will always halt with a definitive answer
(accept or reject) for any input.

o Recursive languages are the class of languages that can be fully "decided" by a
Turing Machine.

« Example: The set of all even numbers in binary form is recursive since there is a clear
algorithm (ending in zero) to determine if a binary number is even.

Recursively Enumerable (RE) Languages

« Definition: A language is recursively enumerable (RE) if there exists a Turing Machine
that will accept any string in the language but may either reject or run indefinitely for
strings not in the language.

o Properties:

o Foran RE language, the Turing Machine is guaranteed to halt if the string is in the
language (accept), but it may never halt if the string is not in the language.

o RE languages are also known as semi-decidable because the Turing Machine may
not provide a definitive answer (halt) for strings not in the language.

« Example: The halting problem (determining if a given Turing Machine halts on a given
input) is RE because, if the machine halts, there’s a way to verify it, but if it doesn’t halt,
there’s no guaranteed way to detect non-halting.

Write Short notes (Any Four)

Chomsky Hierarchy
Post Correspondence Problem:.
6 Write Short notes (Any Two)
Arden’s Theorem a Explain with example Chomsky Hierarchy.
b Post Correspondence Problem.

TM-Halting Problem.

¢ Recursive and Recursive enumerable languages.

6
a
b
C
//d
e Variants of Turning Machines d TM-Halting Problem.
—n®
Q0. Write short note (Solve Any 4)

,4) Decision Properties of Regular Languages
b) Post Correspondence Problem 6. Write short note ondollowing (Any two) :
¢) Variants of Turing Machine a) 91101.11'5 LY ”'w“.?h'\ i
- Q) A ; by a PDA b) Decision properties of regular languages.
) Acceptance by a

.) ¢) Rice’sitheorem.
¢). Conversion of Moare to Mealy Machines d) Definition and working of PDA.
e KRR AR AR)

6. Write short note on following (any 2)

6. Write detailed note on (any two):- (a) Chomsky Hierarchy
(@) Post Correspondence Problem éb; P}ia}lﬁ?g Tl’lzoblem
(b) Halting Problem. PIQNERE E .
. (e) Universal Turing Machine
(c) Rice’s Theorem. - 2 %
K K XK XK X X

6. Write short note on following (any 4)

(a) Closure properties of Context Free Language

P (b) Applications of Regular expression and Finite automata
(¢) Rice’s Theorem
(d) Moore and Mealy Machine

(e) Universal Turing Machine

