Q1:-chomsky hierarchy

The Chomsky Hierarchy is a classification of grammars (systems of rules that
generate languages) based on their complexity and the types of languages they
can generate. Here’s a simplified explanation, referring to the types mentioned in
the image:

-—

. Type 3 - Regular Grammar

Definition: Regular grammar rules are simple. They allow a variable (like
"A") to produce either a single symbol (like "a"), or a symbol followed by
another variable (like "aB" or "Ba").

Example: A rule like "A — aB" or "A — ¢" (where
string).

Application: These are the simplest languages, useful for patterns in text
(e.g., identifying specific words) and can be recognized by finite
automata.

£" means an empty

. Type 2 - Context-Free Grammar

Definition: Context-free grammars have rules where a single variable (like
"A") can be replaced by a sequence of symbols or variables.

Example: A rule like "A — aBb" or "A — (V U T)*", where V is a set of
variables and T is a set of terminals (symbols).

Application: These are used in programming languages to manage
nested structures like parentheses or if-else statements, which can be
recognized by pushdown automata.

. Type 1 - Context-Sensitive Grammar

Definition: In context-sensitive grammars, each rule allows a string of
variables and symbols (like "a") to be replaced by a longer or equal-length
string (like "B"). The rule must preserve or grow the string length.
Example: A rule like "a — B" where [ is at least as long as a.

e Application: These are more powerful, useful for languages that require

matching patterns with certain conditions. Recognized by linear bounded
automata.



4. Type 0 - Unrestricted Grammar

e Definition: Unrestricted grammars have no restrictions on the rules; any
string can be replaced by any other string. This includes all other types of
grammars.

Example: A rule like "a — B" where a and 3 can be any length.

e Application: This type can describe the most complex languages,
including those solved by Turing machines, which represent all
computations a computer can perform.

Q2:-Variants of turing machines

1. Two-Way Infinite Turing Machine

e Description: In a regular Turing machine, the tape (used for reading and
writing data) is infinite in only one direction. In a two-way infinite Turing
machine, the tape extends infinitely in both directions, meaning there is no
end on either side.

e Usage: This machine is useful for problems where data might not be
centered at a specific location, allowing it to move freely to the left or right
without limits.

2. Turing Machine with Multiple Heads

e Description: This type of Turing machine has a single tape but multiple
"heads" that can read, write, or move independently. Each head can
perform its own operation, such as reading a symbol, writing a symbol, or
moving left or right.

e Example: If there are two heads, one might be positioned at the start of
the tape and another somewhere in the middle, and they can both process
data simultaneously.

e Usage: It speeds up certain computations by allowing the machine to
process different parts of the tape at the same time.

3. Multi-Tape Turing Machine

e Description: This Turing machine has multiple tapes, each with its own
read-write head. Each tape can hold different data, and each head can



operate independently, moving left or right and reading/writing on its own
tape.

e Example: In a two-tape Turing machine, one tape could hold the input data
while the other tape is used for intermediate calculations.

e Usage: This is helpful for tasks where multiple pieces of information need
to be accessed or manipulated at the same time, reducing the need for
complicated movements on a single tape.

4. Non-Deterministic Turing Machine (NDTM)

e Description: In a non-deterministic Turing machine, there can be multiple
possible actions for a given state and symbol. The machine can choose
any of these actions, exploring different computational paths at once.

e Example: If a non-deterministic machine encounters a certain symbol in a
state, it might have two options: move right or move left. It can try both
options simultaneously.

e Usage: Non-deterministic Turing machines are theoretical models that help
in understanding problems that(--moaz fagih—) can be solved with
"guessing" the correct path. However, they are equivalent in power to
deterministic Turing machines (where there’s only one option at each step).

Q3:-Post correspondence problem

The Post Correspondence Problem (PCP) is a well-known problem in
theoretical computer science, particularly in the study of formal languages and
automata theory. It’s often used as an example of an undecidable problem—a
problem that cannot be solved by any algorithm for all possible cases.

What is the Post Correspondence Problem?

The PCP involves two lists, A and B, each containing strings (sequences of
symbols) over the same alphabet. The challenge is to find a sequence of indices
such that, when the strings from A and B are combined in this order, they
produce exactly the same resulting string.

Formal Definition

1. Two Lists of Strings:



o You have two lists:

m A={xIx_1x1, x2x_2x2, ..., Xkx_kxk }
m B={yly 1y1,y2y 2y2, ..., yky kyk}

o Each element xix_ixi in list A corresponds to an element yiy_iyi in list

B.
2. Goal:

o Find a sequence of indices, such as ijjk,...i, j, k, ...i,j,k,..., where the
strings picked from A and B at those indices combine to form the
same result.

o In other words, you want to find a sequence where:
xixjxk...=yiyjyk...x_{i} x_{i} x {k} ... =y_{i} y_{i} y_{k}

. XiXjxK...=yiyjyk...
o If such a sequence exists, it’s called a solution to the PCP.

Example
Consider the lists in the provided example:

PY List A = { Ila"’ "aba3ll, "abll }
PY List B = { lla3ll’ llabll, Ilbll }

To solve this, look for a sequence of indices that makes the strings from A and B
identical when combined. For the sequence (2, 1, 1, 3):

e The combined string from A is: "aba® a a ab"
e The combined string from B is: "a®* a b"

Both strings match, so (2, 1, 1, 3) is a solution to this instance of PCP.

Why is PCP Important?

1. Undecidability: The PCP is undecidable, meaning there is no general
algorithm that can find a solution (or prove that none exists) for all possible
instances of PCP. This undecidability is important in understanding the
limits of computation and algorithm design.

2. Applications in Theory: The PCP serves as a foundation for
understanding more complex problems in automata theory, formal
languages, and computability theory. It helps illustrate the types of
problems that cannot be solved by a computer, which is a fundamental
concept in computer science.



Q4:-TM-Halting problem

What is the Halting Problem?

The Halting Problem asks whether it's possible to create an algorithm that can
determine if any given program (Turing machine) will eventually stop (halt) or
keep running forever (loop) when given a specific input.

e Goal: Given a Turing machine M and an input w, determine if M will halt or
run forever when given w

Why is the Halting Problem Important?

The Halting Problem is significant because it shows that there are limits to what
computers can solve. Specifically, it proves that some questions can’t be
answered by any algorithm, no matter how advanced.

Proof of Unsolvability (Using Contradiction)

The Halting Problem is unsolvable. To prove this, we assume the opposite and
show that it leads to a contradiction.

1. Assumption: Suppose there exists a machine H, that can decide whether

any machine M halts on a given input w. The machine H, would:
o OQOutput "halt" if M stops on w.
o Output "loop" if M runs forever on w.

2. Self-Input: Now, imagine an extended machine H, that takes its own
description as input. H, is supposed to determine if M halts on itself as
input.

3. Construction of a New Machine H;: We create another Turing machine
H, that:

o Loops forever if H, says M halts.
o Halts if H, says M loops forever.

4. Contradiction:

o If H; halts, then it must loop (as per its own rules), which is
contradictory.
o If H; loops, then it must halt, which is also contradictory.

Thus, this contradiction shows that H, (the machine that decides halting) cannot
exist, meaning the Halting Problem is unsolvable.



Q5:-Decision properties of regular languages

The decision properties of regular languages refer to certain questions we
can ask about regular languages that can be solved (or "decided") using
algorithms. Here are the main decision properties of regular languages,
explained in simple terms:

1. Emptiness Checking

e Question: Is the language empty? (Does it contain any strings?)

e Explanation: This property checks if a given regular language has any
valid strings or if it's just empty.

e Method: For a regular language represented by a finite automaton, we can
see if there is a path from the start state to an accepting state. If such a
path exists, the language is not empty. If no path exists, the language is
empty.

2. Finiteness Checking

e Question: Is the language finite? (Does it contain a limited number of
strings?)

e Explanation: This checks if the language has only a finite number of
strings or an infinite number.

e Method: For regular languages represented by finite automata, we can
check for cycles (repeated paths). If there’s a cycle in the automaton that
leads to an accepting state, then the language is infinite. If there are no
such cycles, the language is finite.

3. Membership Testing

e Question: Is a specific string in the language?

e Explanation: This property lets us check if a given string belongs to the
regular language or not.

e Method: We can run the string through a finite automaton representing the
regular language. If the automaton ends in an accepting state after
processing the entire string, the string is in the language. If not, it’s not in
the language.

4. Equivalence Testing



e Question: Are two regular languages the same?

e Explanation: This property checks if two regular languages accept exactly
the same set of strings.

e Method: We can use minimization (simplifying finite automata to their
simplest form) for each automaton and then check if the minimized
versions are identical. If they are, the two languages are equivalent;
otherwise, they are not.

5. Subset Testing

e Question: Is one regular language a subset of another?

e Explanation: This checks if all strings in one regular language are also in
another.

e Method: We can use automata operations like intersection and
complement. Specifically, we construct an automaton for the complement
of the second language and check if its intersection with the first language
is empty. If the intersection is empty, the first language is a subset of the
second.

6. Universality Testing

e Question: Does the language include all possible strings over its
alphabet?

e Explanation: This property checks if a language accepts every possible
string that can be formed from its alphabet (the set of symbols it uses).

e Method: To test for universality, we can create the complement of the
language and check if it's empty. If the complement is empty, then the
language is universal (meaning it includes all possible strings).

Q1:-Discuss difference in transition function of PDA, TM and FA



Feature

1. Memory
Structure

2. Transition

Input

3. Output of

Transition

4. Storage
Capacity
5. Transition

Function

Motation

6. Accepting

Condition

7. Reversibility

8. Language
Recognition

Power

9. Complexity of

Transition

10. Example

Transition

Finite Automaton
(FA)

Mo memory. only

current state

Depends on current
state and input

symbol

Mext state

Limited by states

6(‘?! H) = "-f

Accepts if In an

accepting state

Transitions move

forward only

Recognizes regular

languages

Simple (depends
only on input

symbol}

(g,0) = ¢

Q2:-Diff between NFA and DFA

Pushdown Automaton (PDA)

Stack-based memory (can

push/pop}

Depends on current state, input

symbol, and top symbol of stack

Mext state, stack operation
(push/pop)

Limited by stack size (potentially
infinite if unbounded)
8(g,a,2Z) =

(¢, stack operation)

Accepts if iIn an accepting state
and stack 15 empty (if required)

Transitions mowve forward, based

on stack operations

Recognizes context-free

languages

Intermediate (depends on input

and stack top symbol)

(g,a,Z) — (¢, push/pop)

+

Turing Machine (TM)

Infinite tape memory
(read, write, move
left/right])

Depends on current state
and tape symbol under
the head

Mext state, tape operation

(write/mowve)

Infinite tape

§(q, X) = (¢',Y, D).
where I is direction (L or
R)

Accepts if in an accepting

state

Can move left or nght on

the tape

Recognizes recursively

enumerable languages

Complex (depends on
input and position on the

tape)
(¢, X) — (¢, Y,L/R)
(e.g.. writing ¥ and

moving L or )




Feature

1. Transition

Function

2. Determinism

3. Transition

Motation

4. Complexity

5. Acceptance

Condition

6. Computational

Power

7. Backtracking

Requirement

8. Construction

Complexity

9. Speed

10. Conversion to
DFA

Deterministic Finite Automaton (DFA)

For each state and input symbol, there

is exactly one possible next state.

Completely deterministic only one

path is followed for any input string.

d(g,a) = ¢. where ¢’ is unique.

Usually requires more states to
represent the same language as an
MNFA.

Accepts if it reaches an accepting

state at the end of the input.

Equivalent computational power to
NFA; both recognize regular

languages.

Does not require backtracking:
processes one path for each input

string.

Often more complex to construct
directly for complex languages.
Generally slower in design but faster
in execution since it follows a single

path.

DFA is already deterministic.

MNondeterministic Finite Automaton (MFA)

For each state and input symbol, there can

be multiple possible next states or none.

Mon-deterministicc multiple paths can be

followed for a single input string.
d(q,a) = {q1, g2, --- }; multiple next
states are possible.

Often requires fewer states for the same

language, making design simpler.

Accepts if any path leads to an accepting

state at the end of the input.

Equivalent to DFA in power; NFAs also

recognize regular languages.

Conceptually allows backiracking by

exploring multiple paths simultaneously.

Easier to construct since it allows multiple

transitions per state.

Generally faster in design but conceptually

slower in execution due to multiple paths.

Every NFA can be converted to an
equivalent DFA (though it may require

more states).

Q3:-Compare and contrast Moore and Mealy machines



Feature

1. Output

Dependence

2. Qutput

Generation

3. Output

Representation

4. Diagram
Complexity

5. Timing of
Output

6. Number of
States

7. Transition

Complexity

8. Design
Simplicity

9. Application Use

10. Practical
Example

Maoore Machine

Output depends only on the current

state.

QOutput is generated when entering a

state.

Each state has a fixed output.

Generally simpler state diagram since

output is state-based.

Output remains constant as long as the

machine is in the same state.

Typically requires more states to produce
the same output sequences as a Mealy

machine,

Transitions are defined solely based on

state changes.

Easier to design due to state-based

output.

Used in applications where output

consistency within a state is required.

Commonly used in sequential circuits like

counters.

Mealy Machine

Output depends on both the current

state and the current input.

Output is generated on transitions

(based on state and input).

Each transition has its own output, which

can vary for the same state.

Diagram can be more complex, as each

transition may specify a different output.
Output can change immediately with
each input.

Can require fewer states, since outputs
can change within the same state based

on input.

Transitions are defined based on both

state and input conditions.

More complex design due to output

dependence on both states and inputs.

Used where output needs to respend

immediately to input changes.

Commonly used in devices like encoders

and protocol converters.




Q4:-Explain application for FA,PDA and TM

1. Finite Automata (FA)

Lexical Analysis: Used in the design of the lexical analysis phase of a
compiler.

Pattern Recognition: Recognizes patterns through regular expressions.
Circuit Design: Helpful in designing combinational and sequential circuits,
such as Mealy and Moore machines.

e Text Editors: Used for basic pattern matching in text editors.

Spell Checkers: Aids in implementing basic spell-check algorithms.
Learning Models: Can be applied as a model for learning and decision
making.

Text Parsing: Useful for parsing text to extract information and structure
data.




2. Push Down Automata (PDA)

Syntax Analysis: Used in the parsing (syntax analysis) phase of
compilers.

Stack Applications: Useful for implementing applications that use a stack
structure.

Arithmetic Expression Evaluation: Used in evaluating arithmetic
expressions.

e Tower of Hanoi: Applicable in solving problems like Tower of Hanoi.

Software Verification: Assists in verifying and validating the correctness
of software models.

Network Protocols: Parses and validates messages in network protocols
and enforces message formats.

Cryptography: Useful in implementing encryption and decryption
algorithms.

String Matching & Pattern Recognition: Helps in searching for patterns
in input strings.

e XML Parsing: Utilized in parsing XML data.

Natural Language Processing (NLP): Useful for parsing sentences,
recognizing parts of speech, and generating syntax trees.

Formal Verification: Applied in automatic theorem proving and formal
verification of software and hardware systems.

3. Turing Machine (TM)

Recursive Problems: Capable of solving any recursively enumerable
problem.

Complexity Theory: Essential for understanding complexity theory.
Neural Networks: Used in implementing neural network models.
Robotics: Plays a role in implementing robotics applications.

Artificial Intelligence: Used as a foundational model for learning and
decision making in Al.

Algorithm Analysis: Serves as a theoretical model for analyzing time and
space complexity of algorithms.

Computational Biology: Models and analyzes biological systems.



Classical and Quantum Computing: Studies the relationship between
classical and quantum computing.

Digital Circuit Design: Models and verifies digital circuit behavior.
Human-Computer Interaction (HCI): Helps model and analyze
human-computer interaction.



