Times asked: m
5 times

3 times

2 times
1time
indicates 5-mark question

Big Data Analytics Question bank

1. Introduction to Big Data and Hadoop

1. Explain four characteristics of Big Data. ~ #

2. Describe the components of Hadoop ecosystem with the help of a diagram.

2. Hadoop HDFS and MapReduce

3. Write a map reduce pseudo code for word count problem. Apply map reduce working on the

i. “Thisis NoSQL. NoSQL handles complex data.”
ii. “Bigdatais powerful. Big data drives decisions.”

4. Explain Map Reduce execution pipeline with suitable example.
5. Write a map reduce pseudo code to multiply two matrices. Apply map reduce working to
perform following matrix multiplication.

1 2 3 1
M=4 5 6 X V=2
7 8 9 3

6. Explain natural join and grouping and aggregation relational algebraic operation using
MapReduce.

3. NoSQL

7. Explain various architectural patterns in NoSQL databases.

8. List and explain the core business drivers behind the NoSQL movement. #

4. Mining Data Streams

CMIShow how the Flajolet- Martin algorithm will estimate the number of distinct elementsin a
i. Supposethe streamisS={10,12,8,15,6,9, 14, 7}.
Let hash functions h(x) = 5x + 11 mod 32 and treat the result as a 5-bit binary integer.
ii. Forthe stream of integers: 9,8,7,6,5,4, 3,2
Use the hash function, h(x) = (2x + 1) mod 32 and treat the result as a 5-bit binary
integer.
10. Explain the architecture of the data-stream management system with a neat diagram.

11. List down all six constraints that must be satisfied for representing a stream by buckets

using DGIM algorithm with examples. #
12. Explain DGIM algorithm for counting ones in a stream with example.
13. Explain the concept of bloom filter with an example. #

5. Real-time Big Data Models

i’ Determine communities for the given social network graph using Girvan-Newman

(2 times)

15. How is recommendation done based on properties of product (Content-based
recommendation). Elaborate with a suitable example.
16. Explain Collaborative filtering in recommendation systems with an example.

6. Data Analytics with R

17. Create data frame in R and perform operations.
I] The project manager at XYZ Ltd., Ms. Meera, is responsible for main details of all active
projects. She has organized the project information in the following table:

j y -~ | Status”
:’(;'omct Project Name | Budget Btatns
11 o CRM_ o 120000 In Progrtv:ss‘
. Implementation - A o
2 -~ Cloud Infrastructure-.| 180000 .-'| Completed
3 Network Upgrade * | 60000 | Not Started
< E-Commcrce 220000 ,mepletgd:,
e Platform Y o> ’
5 <~ Data Analytics - 190000 | InProgress

i) Create a Data frame in R for the above project data and display the output.
ii) Ms. Meera has recently approved 2 new projects and wants to find their
information. The new projects are as follows:

| Project1d | Project Name. | Budget | Status
6 UX Research 160000 | Not Started
4 Cloud - 190000 Not Started
| Integration

iii) Update the Data frame to include the new projects and demonstrate the final

output.

[I] 1. Create a data frame from the following 4 vectors and demonstrate the output:
emp_id =c(1:5)
emp_name =c("Rick", "Dan", "Michelle", "Ryan", "Gary")
start_date = ¢("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-
03-27")
salary =c¢(60000, 45000, 75000, 84000, 20000)

2. Display structure and summary of the above data frame.
3. Extract the emp_name and salary columns from the above data frame.
4. Extract the employee details whose salary is less than or equal to 60000.

18. Write script in R for creating subsets:
Consider the following data frame:

course id class marks
] 11] 56
2 12 2 75
3 13] 48
4 14 y 69
5 15 | 84
6 16 L 53

i) Create a subset of course less than 5 by using [] brackets and demonstrate the output.
ii) Create a subset where the course column is less than 4 or the class equals to 1 by using
subset() function and demonstrate the output.

19. Write the script to sort the values contained in the following vector in ascending order and
descending order: (46, 23, 15, 38, 98, 56, 28, 78). Demonstrate the output. #
20. List and explain various types of data structures in R.

21. Name and explain the operators used to form data subsets in R. #
22. Explain the various functions provided by R to combine different sets of data. #
1 2 3 4 5 6
2025 May 15 25 15 25 20 20
2024 Dec 15 20 20 25 20 20
2024 May 10 20 15 25 20 30
2023 Dec 10 25 10 25 20 30
2023 May 10 20 15 25 20 30
2022 Dec 10 20 15 25 20 30
Estimate 10 20 15 25 20 30
Total 80 130 80 150 120 160

Asked once:

indicates 5-mark question
1. Introduction to Big Data and Hadoop

1. Secondary Name is a backup of Name node. Is this statement True or False? Justify your
answer. #

. Explain how big data problems are handled by Hadoop system. #

. What is the basic difference between traditional RDBMS and Hadoop? #

. Distinguish between Name node and Data node. #

. What are the Core Hadoop components? Explain in detail.

a b~ WON

2. Hadoop HDFS and MapReduce

6. Explain selection and projection relational algebraic operation using MapReduce.

7. Explain how node failure is handled in Hadoop. #

8. What is function of Map Tasks in the Map Reduce framework? Explain with the help of an
example. #

9. Why is HDFS more suited for applications having large datasets and not when there are
small files? Elaborate. #

10. Name the three ways that resources can be shared between computer systems. Name
the architecture used in big data solutions.

3. NoSQL

11. Demonstrate how business problems have been successfully solved faster, cheaper and
more effectively considering NoSQL Google’s Big case study. Also illustrate the business
drivers and the findings in it. 1

12. Demonstrate how business problems have been successfully solved faster, cheaper and
more effectively considering NoSQL Google’s MapReduce case study. Also illustrate the
business drivers and the findings in it. #

13. Explain CAP. How is CAP different from ACID property in databases? #

14. Describe the four ways by which big data problems are handled by NoSQL.

4. Mining Data Streams

15. Create a Bloom filter with the following parameters:
Size of the bitarraym =8
Hash functions:
a. h,(x)=xmod m
hy(x) =(2x + 1) mod m
hs(x) = (3x +2) mod m
(i) Insert the following elements into the Bloom filter: 12, 25, 30, 5
(i) Check if the following elements are present in the Bloom filter: 6, 55
(iii) Discuss the results of your checks, identifying which elements are true
positive and which is true negative.

16. List and explain the different issues and challenges in data stream query processing. #

5. Real-time Big Data Models

17. What is arecommendation system? How is classification algorithm used in a
recommendation system?

18. Write an algorithm for the Clique Percolation Method and discover the communities in the
given below graph using Clique Percolation Method with clique k=3.

6. Data Analytics with R

19. Describe applications of data visualization.

20. List and explain various functions that allow users to handle data in R workspace with
appropriate examples.

21. What are the advantages of using functions over scripts? #

22. Write a script to create a dataset named data1 in R containing the following text:
Text: 2,3,4,5,6.7,7,8.1,9 #

23. Suppose you have two datasets A and B.
Dataset A has the following data: 6 789
Dataset B has the following data: 1245
Which function is used to combine the data from both datasets into dataset C?
Demonstrate the function with the input values and write the output. #

24. The data analyst of Argon technology Mr. John needs to enter the salaries of 10 employees
in R. The salaries of the employees are given in the following table:

Sr. No. | Name of employees | Salaries
1 Vivek 21000
2 Karan 55000
3 James 67000
1 Soham 50000
5 Renu 54000
6 Farah 40000
7 Hetal 30000
8 Mary 70000
9 Ganesh 20000
10 Krish 15000

i. Which R command will Mr. John use to enter these values demonstrate the output.
ii. Now Mr. John wants to add the salaries of 5 new employees in the existing table, which
command he will use to join datasets with new values in R. Demonstrate the output.

25. The following table shows the number of units of different products sold on different days:

Product Monday | Tuesday | Wednesday | Thursda | Friday
y

Bread 12 3 5 11 9

Milk 21 27 18 20 15

Cola Cans 10 1 33 6 12

Chocolate | 6 7 4 13 12

bars

Detergent 5 8 12 20 23

Create five sample numeric vectors from this data. #

Big Data Analytics Answer bank

indicates 5-mark question

1. Introduction to Big Data and Hadoop

1. Explain four characteristics of Big Data. #

Big Data refers to extremely large and complex data sets that cannot be efficiently stored,
processed, or analyzed using traditional database management tools. It is defined by certain key
characteristics that highlight its scale and complexity, commonly known as the Four V’s:
Volume, Velocity, Variety, and Veracity.

Four Characteristics of Big Data

1. Volume: Indicates the massive scale of data generated from sources like social media,
sensors and transactions. These data can range from terabytes to zettabytes, far beyond
the limits of traditional databases.

2. Velocity: Refers to the high speed at which data is produced, collected, and processed—
often in real time or near real time. Examples include live video streams or sensor data.

3. Variety: Represents the diversity of data formats and structures, including structured
(tables), semi-structured (XML, JSON), and unstructured (text, images, audio, video) data.

4. Veracity: Describes the reliability and trustworthiness of data. Big Data often includes
noise, missing values, or inconsistencies, making data quality an important concern.

2. Describe the components of Hadoop ecosystem with the help of a diagram.

Oozie |chukwa | Flume ZooKeeper Data
MonItLThG Manitering | Sikontioring Management Management

Hive Pig Mahout Avro Sqoop Data

(sqL) (Dataflow) (Machine (RPC) (RDBMS Access

Learning) Connector)
(Cluster Management) | (Clazt:;g;::::)rce Processing
HDFS HBASE Data
(File System) (Column DB storage) Storage

The Hadoop Ecosystem is a framework of open-source tools built around Hadoop to store,
process, manage, and analyze large-scale data efficiently.

It is organized into four layers: Data Storage, Data Processing, Data Access, and Data
Management.

1. Data Storage Layer
« HDFS (Hadoop Distributed File System)
o Distributed storage system that stores data across multiple nodes.
o Provides fault tolerance by replicating data blocks.
o Stores very large files by splitting them into blocks.
« HBase
o A NoSQL, column-oriented database that runs on top of HDFS.

o Supports real-time read/write access to large datasets.

2. Data Processing Layer
« MapReduce
o Programming model for parallel data processing.

o Splits jobs into Map tasks (processing) and Reduce tasks (aggregation).

« YARN (Yet Another Resource Negotiator)
o Manages cluster resources and schedules jobs.

o Allows multiple data processing engines (MapReduce, Spark) to run on Hadoop.

3. Data Access Layer

Hive — Data warehouse tool with SQL-like query language (HiveQL).
Pig — High-level scripting language (Pig Latin) for data transformation.
Mahout — Machine learning library for building scalable algorithms.
Avro - Data serialization system for data exchange between programs.

Sgoop - Transfers bulk data between Hadoop and relational databases.

4. Data Management Layer

Oozie — Workflow scheduler for managing Hadoop jobs.
Chukwa - Tool for collecting and monitoring large amounts of log data.
Flume - Distributed service for ingesting streaming data into HDFS.

ZooKeeper - Coordination and configuration management service for distributed
systems.

2. Hadoop HDFS and MapReduce

3. Write a map reduce pseudo code for word count problem. Apply map reduce working on the

i. “Thisis NoSQL. NoSQL handles complex data.”
ii. “Bigdatais powerful. Big data drives decisions.”

MapReduce Pseudocode for Word Count
Map Function:
Map(key, value):

for each word w in value:

Emit(w, 1)

Reduce Function:
Reduce(word, counts):

total = sum(counts)

Emit(word, total)

Input Document:
i. “Thisis NoSQL. NoSQL handles complex data.”

1. Map Phase

Each word is emitted as (word, 1):

Mapper Output

(This, 1)

(is, 1)

(NoSQL, 1)

(NoSQL, 1)

(handles, 1)

(complex, 1)

(data, 1)

2. Shuffle and Sort Phase

Group all identical words together:

Word List of Values

This [1]
is [1]
NoSQL |[1,1]

handles |[1]

complex | [1]

data [1]

3. Reduce Phase

Sum all values for each key:

Word Count
This 1
is 1
NoSQL |2
handles | 1
complex | 1
data 1

Final Output:
(This, 1)

(is, 1)
(NoSQL, 2)
(handles, 1)
(complex, 1)

(data, 1)

4. Explain Map Reduce execution pipeline with suitable example.

Input

Splitting

Deer Bear River|--

Deer Bear River

Car Car River

Deer Car Bear

Car Car River

1. Input Phase

The input dataset is stored in the HDFS (Hadoop Distributed File System).

Deer Car Bear |-

Mapping

Shuffling

Deer, 1
Bear, 1
River, 1

Bear, 1
Bear, 1

Reducing

Car, 1
Car, 1
River, 1

Car, 1
Car, 1
Car, 1

Bear, 2

r

Deer, 1
Car, 1
Bear, 1

Deer, 1
Deer, 1

Car, 3

Find
output

River, 1
River, 1

Deer, 2

N

Bear, 2
Car, 3

Deer, 2
River, 2

k.

Fig. 3.2.1 : MapReduce process for word frequency count

River, 2

The large file is divided into blocks which are processed independently.

Example Input:

Deer Bear River

Car Car River

Deer Car Bear

2. Splitting Phase

The input data is divided into smaller logical chunks called input splits.

Each split typically corresponds to a line, paragraph, or block of data.

Example:

Split 1: Deer Bear River

Split 2: Car Car River

Split 3: Deer Car Bear

Each split is sent to a different mapper.

3. Mapping Phase

Each Mapper processes one split of input and produces key-value pairs (K, V).

In the word count problem, each word is the key, and the value is 1 (indicating one

occurrence).

Output of Mapping:
(Deer, 1), (Bear, 1), (River, 1)
(Car, 1), (Car, 1), (River, 1)
(Deer, 1), (Car, 1), (Bear, 1)
4. Shuffling and Sorting Phase
« The framework groups together all pairs with the same key across all mappers.
« Allvalues belonging to the same key are collected together.
Shuffled Output:
Bear > [1, 1]
Car »[1,1,1]
Deer~>[1, 1]
River>[1, 1]
This step ensures that all data for one key goes to the same reducer.
5. Reducing Phase
« Each Reducer processes one key and its list of values.
« Thereducer aggregates values to produce the final count.
Reduce Function Example:
sum(values)
Reduced Output:
Bear, 2

Car, 3
Deer, 2
River, 2

6. Output Phase
« The final (key, value) pairs are written back to HDFS as the output file.

Final Output:
Bear 2
Car 3
Deer 2

River 2

5. Write a map reduce pseudo code to multiply two matrices. Apply map reduce working to
perform following matrix multiplication.

1 2 3 1
i.é i x g ; i.M=4 5 6 x V=2
7 8 9 3

Map pseudo code:
for each element A[i][k] in matrix A:

emit (k, (‘A, i, Ali][k]))

for each element B[k][j] in matrix B:

emit (k, ('B} j, BIK][j]))
Mapper for Matrix A > (k,v) = ((i,k), (A,j,Aij)) for all k
k=1

. =1 j=15((1,1), (A1,1))
=2~>((1,1), (A,2,2)) 3 4

e =2 j=1>((2,1), (A,1,3))
i=2>((2,1), (A,2,4))

. i=1 j=12((1,2), (A,1,1))
=2>((1,2), (A,2,2))

. =2 j=1>((2,2), (A,1,3))
i=2>((2,2), (A,2,4))

@y
~J

Mapper for Matrix B > (k,v) = ((i,k), (B,j,Bjk)) for all i

Reduce pseudo code:

for each key k:
listA=all (‘A, i, A[i][k]) values for this k
listB = all ('B), j, B[k][j]) values for this k

for each (i, Aik) in listA:
for each (j, Bkj) in listB:
emit ((i, j), Aik * Bkj)
Reducer(k, v) formula:
For (i, k), Make sorted A list and B list

Sum(A; x Bj) for all j
Output =((i, k), sum)

From Mapper results, we have 4 common keys: (1,1),(1,2),(2,1),(2,2)

1. (1,1):
Alist={(A,1,1), (A, 2, 2)}
B list={(B, 1, 6), (B, 2, 8)}

AjxBx=(1x6)+(2x8)=6+16=22
2. (1,2):

Alist={(A,1,1), (A, 2, 2)}
Blist={(B, 1,7), (B, 2, 9)}

AjxBx=(1x7)+(2%x9)=7+18=25
3. (2,1):

Alist={(A, 1, 3), (A, 2, 4)}
B list={(B, 1, 6), (B, 2, 8)}

AjxBx=(3x6)+(4%x8)=18+32=50
4. (2,2):
Alist={(A, 1, 3), (A, 2, 4)}
Blist={(B, 1, 7), (B, 2, 9)}

AjxBx=(3x7)+(4%x9)=21+36=57

Final Output:
(1,1, 22), ((1,2),25), ((2,1),50), ((2,2),57)

_[22 25
50 57

6. Explain natural join and grouping and aggregation relational algebraic operation using
MapReduce.

1. Natural Join using MapReduce
A Natural Join combines two relations (tables) based on their common attribute(s) and merges
tuples having the same value for those attributes.

Example:

Let

R(A, B) ={(1, x), (2, y)}
S(B, C) ={(x, 100), (y, 200)}

Expected Result:
RIS >{(1, %, 100), (2, y, 200)}

MapReduce Implementation:
Map Phase:

From relation R, emit (key = B, value = (“R”, other attributes))
From relation S, emit (key = B, value = (“S”, other attributes))

Map Output:

(x, ("R% 1)), (v,("R%2))

(x, ("S",100)), (v,("S",200))

Shuffle Phase:

Group values by key (common attribute).

Reduce Phase:

For each key, find matching tuples from R and S, and combine them.
Reducer Output:

(x, (1,100)), (y, (2,200))

2. Grouping and Aggregation using MapReduce
These operations group tuples based on an attribute and perform aggregate functions like
COUNT, SUM, AVG, MIN, or MAX.

Example:
Relation Sales(Product, Amount)
(Pen, 10), (Book, 20), (Pen, 15), (Book, 25)

Goal: Calculate the total amount of sales for each product.

MapReduce Implementation:

Map Phase:

Emit key = Product, value = Amount

Map Output: (Pen,10), (Book,20), (Pen,15), (Book,25)
Shuffle Phase:

Group by key

(Pen,[10,15]), (Book,[20,25])

Reduce Phase:

Apply aggregation function (SUM in this case).
Reducer Output: (Pen,25), (Book,45)

3. NoSQL

7. Explain various architectural patterns in NoSQL databases.
Key-Value store pattern:

Data is stored as a collection of key-value pairs, where each key acts as a unique identifier to
retrieve its associated value. The system functions like a dictionary or hash map, making data
retrieval extremely fast.

Example:

Key Value

Name John

Age 21

Hobbies Reading, Football

Each key uniquely identifies its corresponding value. The database can quickly fetch or update
data by querying the key. For example, by querying the key “Name”, it retrieves the value “John.”

Example databases: Redis, Riak.

Column-Family Store Pattern

Column-family databases store data by columns instead of rows and are based on Google’s
BigTable. Values of a single column are stored together on disk, which allows fast retrieval. The
data is still organized in a table-like structure but optimized for large-scale read and write
operations.

Example

emailAddress gender age
Bob bob@example.com male 35
1465676582 1465676582 1465676582

Each row key (like “Bob”) uniquely identifies one record, and all details related to that person are
stored under it as columns such as emailAddress, gender, and age. Each column stores a value
along with a timestamp showing when it was last updated.

Example databases: Apache Cassandra, HBase.

Document Store Pattern:

A document store stores data in the form of documents, usually using formats like JSON, BSON,
or XML. Each document holds key-value pairs and supports a flexible, schema-less structure. It
is ideal for managing semi-structured data like user profiles or product catalogues.

Example:
{

"Name": "Rohan",

"Age": 22,

"City": "Mumbai",

"Skills": ["Football", "Coding"]
}

In a document store, data is stored as documents. Each document contains key-value pairs and
can have a flexible structure, meaning new fields can be added anytime. For example, this
document stores details of Rohan with fields like Name, Age, and Skills.

Example databases: MongoDB, CouchDB.

Graph Data-store:

Graph databases store data as nodes, edges, and properties to represent relationships. Nodes
represent entities, edges represent relationships between nodes and properties store details
about nodes or edges. This structure allows fast traversal and querying of complex relationships.

Example: ——

member

isMember

In this graph data store, nodes represent entities like people (e.g., Rohit), and edges represent
relationships between them, such as “knows” or “isMemberOf.” Each node and edge can have
properties defining their details, for example, Rohit has properties like name: “Rohit” and age: 25

Example databases: Example: Neo4j, OrientDB.

8. List and explain the core business drivers behind the NoSQL movement. #

Traditional relational databases (RDBMS) with a single CPU often cannot meet modern business

needs due to challenges in Volume, Velocity, Variability, and Agility. NoSQL databases address
these limitations.

1. Volume

Organizations need to handle huge datasets by using groups of normal, low-cost
computers instead of depending on a single faster CPU.

The “power wall” problem (heat dissipation limits in CPUs) forced a shift from scaling up to
scaling out via parallel processing.

NoSQL supports horizontal scaling — splitting the work into smaller parts and processing
them in parallel.

2. Velocity

Applications like e-commerce and social media need real-time data inserts and queries.

Traditional RDBMS can become bottlenecks due to heavy indexing or sudden traffic
spikes.

NoSQL supports high read/write throughput and handles unpredictable bursts efficiently.

3. Variability

Modern data is diverse — structured, semi-structured, and unstructured — which does
not fit well into rigid RDBMS schemas.

In RDBMS, changing the structure (schema) is slow and may require downtime.

NoSQL is schema-free, so it stores different types of data easily without stopping the
system.

4. Agility

Agility means the ability to adapt quickly to change — whether in data models, operational
requirements, or application features.

RDBMS often need extra programming layers to handle complex data, which slows down
development.

NoSQL’s flexible design makes it easy to update features, scale up, and adapt without big
delays.

4. Mining Data Streams

CMIShow how the Flajolet- Martin algorithm will estimate the number of distinct elementsin a

i. Supposethe streamisS={10,12,8,15,6,9, 14, 7}.
Let hash functions h(x) = 5x + 11 mod 32 and treat the result as a 5-bit binary integer.

Given:
Stream § = {10,12,8,15,6,9,14,7}, hash h(x) = 5x + 11mod 32.

Step 1: Apply the hash function to each value, then convert each hashed result to a 5-bit binary
and count the trailing(ending) zeros.

Element (x) h(x)=5x+11 mod 32) 5-bit binary trailing zeros
10 29 11101 0
12 7 00111 0
8 19 10011 0
15 22 10110 1
6 9 01001 0
9 24 11000 3
14 17 10001 0
7 14 01110 1

Step 2: Identify the maximum number of trailing zeros

The maximum trailing-zeros observed R,y = 3 (from hashed value 24).
Step 3: Apply the Flajolet-Martin estimation formula:

The estimate for the number of distinct elements is 2f™® =23 =8,

Result: FM estimates 8 distinct elements in the stream (which matches the actual distinct
count 8).

ii. Forthe stream of integers: 9,8,7,6,5,4, 3,2
Use the hash function, h(x) = (2x + 1) mod 32 and treat the result as a 5-bit binary integer.

Given:
Stream S = {9,8,7,6,5,4,3,2}, hash h(x) = (2x + 1)mod 32

Step 1: Apply hash, convert to 5-bit binary, count trailing (ending) zeros

Element (x) h(x) = (2x+1) mod 32 5-bit binary Trailing zeros
9 19 10011 0
8 17 10001 0
7 15 01111 0
6 13 01101 0
5 11 01011 0
4 9 01001 0
3 7 00111 0
2 5 00101 0

Step 2: Identify the maximum number of trailing zeros
The maximum trailing-zeros observed R,;x = 0(all hashes end in 1 so zero trailing zeros).
Step 3: Apply the Flajolet—Martin estimation formula

The estimate for the number of distinct elements is 28 =20 = 1,

Result: FM estimates 1 distinct element in the stream.

Other problems:

iii. Suppose the streamisS={4,2,5,9,1,6, 3,7}.
Let hash functions h(x) = 3x + 7 mod 32 for some a and b, treat result as a 5-bit binary
integer. Show how the Flajolet- Martin algorithm will estimate the number of distinct
elements in this stream.

iv. Suppose the streamisS={2,1,6,1,5,9, 2, 3, 5}.
Let hash functions h(x) = ax + b mod 16 for some a and b, treat result as a 4-bit binary
integer. Show how the Flajolet- Martin algorithm will estimate the number of distinct
elements, h(x) =4x + 1 mod 16.

V. Suppose the streamis1,3,2,1,2,3,4,3,1, 2,3, 1.
Let h(x) = 6x + 1 mod 5. Show how the Flajolet-Martin algorithm will estimate the number
of distinct elements in this stream.

10. Explain the architecture of the data-stream management system with a neat diagram.

A Data Stream Management System (DSMS) is a system designed to process continuous, high-
speed data streams in real-time. Unlike traditional DBMS, which stores data first and then
queries it, DSMS processes data instantly as it flows through the system, providing immediate
results.

Ad-hoc Queries

Streams entering

1,3,40,975 Standing Output Streams
qwertyul — Queries —

0,1,1,0,1,0,0,0

—_ .

Stream Processor

< Time

Limited Working
Storage

Archival Storage

Key Components:
1. Streams Entering
o Continuous flows of data, such as numbers, sensor readings, logs, or user clicks.
o Examples:
= Numerical: 1, 3,4,0,9, ...
= Textual:q,w,e,r, ...
o These streams arrive continuously over time.
2. Stream Processor
o Core of the DSMS, continuously processes incoming data streams.
o Contains Standing Queries: long-running queries that produce results as new data arrives.
o Example queries:
= Average temperature in last 10 minutes
= Number of transactions per second
3. Output Streams
o After processing, results are generated as continuous output streams.

o These results can update dashboards, generate alerts, or be used for further processing.

4. Ad-hoc Queries
o Users can send on-demand queries to extract insights from live streams or historical data.
o Example: “Show me total sales in the last 5 minutes.”

5. Limited Working Storage
o DSMS cannot store infinite data because streams are unbounded.

o ltuses asliding window to keep a recent subset of data (e.g., last 1 minute). This ensures
efficient processing and memory usage.

6. Archival Storage
o Older stream data that is not needed for immediate queries is moved to archival storage.

o Useful for long-term analytics, audits, or machine learning training later.

11. List down all six constraints that must be satisfied for representing a stream by buckets
using DGIM algorithm with examples. #

1. The right end of every bucket must always correspond to a 1
Example: If a bucket covers bits from timestamp 3 to 5, then timestamp 5 (the right end) must
bea1.

2. Every 1 in the stream must belong to exactly one bucket
Example: If the streamis101 101, each 1 atpositions 1, 3, 4, and 6 will be part of some bucket.

3. No bit position can belong to more than one bucket
Example: If the 1 at position 4 is already part of a size-2 bucket, it cannot appear again in any
other bucket.

4. There can be at most two buckets of the same size
Example: If three buckets of size 1 exist, the two oldest are merged into a single bucket of size 2.

5. All bucket sizes must be powers of 2 (1, 2,4, 8, ...)
Example: Buckets can represent 1, 2, or 4 ones — not 3 or 5 ones.

6. Bucket sizes must not decrease as we move left (backin time)
Example: If the newest bucket is of size 2, older buckets can only be of size 2, 4, 8, 16, ... asyou
move left.

12. Explain DGIM algorithm for counting ones in a stream with example.

The DGIM (Datar-Gionis-Indyk—-Motwani) algorithm is used to approximate the number of 1’s in
the last k bits of a binary data stream using limited memory. It is especially useful when the
stream is continuous and too large to store completely.

Algorithm Steps:
1. When a new bit arrives:
o Ifitis0~>ignore it.
o Ifitis 1~ create a new bucket of size 1 with the current timestamp.
2. Merging:

o If more than two buckets of the same size exist then merge the two oldest into one
bucket of double size.

3. Deleting old buckets:
o Buckets older than the window size k are deleted.
4. Counting 1’s:
o Add the sizes of all buckets completely inside the window.
o Add half of the last (oldest) bucket since it may only be partially inside the window.
Example:

Given Stream (left 2 right):
100101

Goal: To estimate the number of 1’s in the last 6 bits.

Step 1: Process Stream (Right > Left)

Bit Action Buckets

1 Create size-1 bucket [1]

0 lgnore [1]

1 New size-1 bucket [1, 1]; two size-1 buckets present, which is [1, 1]
allowed.

0 lgnore [1,1]

0 lgnore [1,1]

1 New size-1 bucket [1, 1, 1]; three size-1 buckets found, so merge | [1, 2]
the two oldest size-1 buckets to form one size-2 bucket.

Step 2: Final Buckets
Final buckets after processing =[1, 2]

Step 3: Estimate Number of 1’s

Use DGIM rule:
Estimate = (sum of sizes of all buckets except the oldest) + (2 x oldest bucket)

Estimate=1+ (2/2)=1+1=2
Result

DGIM Estimate = 2
Actual Count =3

The estimate (2) is an approximation and less than the true count (3); this is expected because
DGIM trades exactness for very low memory usage.

13. Explain the concept of bloom filter with an example. #

A Bloom Filter is a probabilistic data structure used to check whether an elementis in a set.
It is fast and space-efficient, but may return false positives — it can say an element is present
even when itis not.

Example:

Let bit array size be m =6, and two hash functions:
h,(x) =x mod 6

h,(x) =(2x+ 1) mod 6

Insert elements: 5and 10

Element | h,(x)=xmod6 h,(x) =(2x+ 1) mod 6 Bits Set (positions)
5 5 (2x5+1)mod6=11mod6=5 5
10 10mod6=4 (2x10+1)mod6=21mod6=3 4,3

Bit array after insertion [Bits 0-5]:
[0,0,0,1,1,1]
Membership Test for Element 4:

h,(4)=4mod6=4
h,y(4) =(2x4+1)mod 6=9mod 6 =3

Positions 3 and 4 are both 1, so the Bloom filter would indicate that 4 is probably present.

However, since 4 was not actually inserted, this shows a false positive — the Bloom filter
wrongly says 4 is present because its hash positions overlap with other elements.

5. Real-time Big Data Models

i’ Determine communities for the given social network graph using Girvan-Newman

(2 times)

https://www.youtube.com/watch?v=dmMKJ1YUIl-M

For A: For B:

For C: For D:

For E:

For F:

Edge A C E F G Total Dividing centrality
by 2 as edges are
bidirectional.

AB 5 0 1 1 1 10 10/2=5

AC 1 1 0 0 0 2 2/2=1

BC 0 5 1 1 1 10 10/2=5

BD 4 4 3 3 3 24 24/2=12

DG 1 1 0.5 0 4.5 9 9/2=4.5

DF 1 1 0 4 0 8 8/2=4

DE 1 1 4.5 0 0.5 9 9/2=4.5

EF 0 0 1.5 1 0.5 3 3/2=1.5

FG 0 0 0.5 1 1.5 3 3/2=1.5

Divide the network into communities by removing the edge with the highest betweenness

centrality.

5

o1

Community 1

Other graphs asked:

©
0

Community 2

15. How is recommendation done based on properties of product (Content-based
recommendation). Elaborate with a suitable example.

A content-based recommendation system suggests items to a user by analyzing the properties
or features of the items and matching them with the user’s preferences. It focuses on the
content (attributes or characteristics) of items rather than other users’ behavior.

Working Principle

Each item (like a movie or product) is represented by its features such as category, brand, or
keywords. The system builds a user profile from items the user has previously liked and
compares it with other items using similarity measures (e.g., cosine similarity). ltems most
similar to the user’s preferences are then recommended.

User Profile:
Represents the interests, preferences, and behavior of a user, created based on features of
items the user has interacted with or rated positively.

Item Profile:
Describes an item using its key attributes or features that help in comparing it with user
preferences during recommendation.

Steps Involved

1. Feature Extraction: Identify important features from each product (e.g., category, price
range, specifications).

2. User Profile Creation: Build a preference profile using features from products the user
has liked.

3. Similarity Calculation: Compute similarity between user profile and other products.

4. Recommendation Generation: Suggest top products most similar to the user’s
preferences.

Example (E-commerce Platform like Amazon/Flipkart)

Suppose a user views and purchases a Samsung Galaxy S24 with the following features:
« Category: Electronics
o Brand: Samsung
« Features: 5G, 256GB storage, AMOLED display

The system analyzes these preferences and identifies other smartphones with similar
specifications such as the OnePlus 12 (5G, 256GB, AMOLED) or Google Pixel 8 (5G, 256GB,
OLED) and recommends them to the user.

16. Explain Collaborative filtering in recommendation systems with an example.

Collaborative filtering is a widely-used technique in recommendation systems that makes
predictions for a user by considering the preferences and behaviours of other users with similar
tastes. Unlike content-based filtering, which relies on product attributes, collaborative filtering
uses user-item interactions such as ratings, clicks, and purchase history to generate
recommendations.

Types of Collaborative Filtering:
1. User-Based Collaborative Filtering
o Finds users who have similar taste and recommends items liked by those users.

o Example:
If User A and User B both liked similar movies before, and User A liked Inception, then
Inception is recommended to User B.

2. Item-Based Collaborative Filtering
o Finds similar items based on user ratings.
o Recommends items that are similar to those the user has already liked.

o Example:
If a user liked Interstellar, and Inception is often liked by users who liked Interstellar, then
recommend Inception.

Collaborative Filtering in E-Commerce (Example: Amazon/Flipkart)

Collaborative filtering recommends products based on similarities between users or items.
On Amazon or Flipkart, it analyzes purchase history, ratings, or browsing behavior of many users.

Example:

If many users who bought a Smartphone also bought a Phone Case, then when a new user buys
a Smartphone, the system recommends a Phone Case.

Similarly, if two users have bought similar electronics before, and one buys a Smartwatch, the
system suggests that Smartwatch to the other.

Advantages
« Works well without needing detailed content about items.
o Learns from real user behavior.
« Can capture complex, non-obvious patterns of taste similarity.
Limitations
« Cold Start Problem: Cannot recommend for new users/items with no history.

« Data Sparsity: Many users rate only a few items, reducing accuracy.

6. Data Analytics with R

17. Create data frame in R and perform operations.
I] The project manager at XYZ Ltd., Ms. Meera, is responsible for main details of all active

projects. She has organized the project information in the following table:

f;o‘lc“ T"roject Nah]e Budgét\ ' Statqs
11 CRM‘ C llf()/OOO ,In Progrciss“
<, Implementation | 45 Al &
2 Cloud Infrastructure.| 180000 .| Completed
3. _|{-Network Upgrade * | 60000° | Not Started .
2 B E-Commerce -~ 230000 »meplete.d:,
.~ | Platform /v~ 5% >
5. Data Analytics 190000 | In Progress

i) Create a Data frame in R for the above project data and display the output.
ii) Ms. Meera has recently approved 2 new projects and wants to find their
information. The new projects are as follows:

| Project1d | Project Name. | Budget | Status
6, UX Research 160000 | Not Started
Cloud . S Not Started
/ | Integration W00

iii) Update the Data frame to include the new projects and demonstrate the final

output.
1. Create Data Frame in R with Given Projects
project_id <-c(1, 2, 3, 4, 5)
project_name <- ¢("CRM Implementation", "Cloud Infrastructure", "Network Upgrade",
"E-Commerce Platform", "Data Analytics")
budget <- ¢(120000, 180000, 60000, 220000, 90000)

status <- ¢("In Progress", "Completed", "Not Started", "Completed", "In Progress")

df <- data.frame(Project_ID = project_id, Project_Name = project_name,
Budget = budget, Status = status)

Display output

print(df)

2. Add New Projects

new_project_id <-c¢(6, 7)

new_project_name <- ¢("UX Research", "Cloud Integration")
new_budget <- ¢(160000, 190000)

new_status <- c("Not Started", "Not Started")

new_projects <- data.frame(Project_ID = new_project_id, Project_Name = new_project_name,
Budget = new_budget, Status = new_status)
3. Update Data Frame with New Projects

df_updated <- rbind(df, new_projects)

Display final data frame

print(df_updated)

Output:

Project_ID Project_Name Budget Status

1 CRM Implementation 120000 In Progress
2 Cloud Infrastructure 180000 Completed
3 Network Upgrade 60000 Not Started
4 E-Commerce Platform 220000 Completed
5 Data Analytics 90000 In Progress
6 UX Research 160000 Not Started
7 Cloud Integration 190000 Not Started

Il 1. Create a data frame from the following 4 vectors and demonstrate the output:
emp_id =c(1:5)
emp_name = c("Rick", "Dan", "Michelle", "Ryan", "Gary")
start_date = ¢("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-
03-27")
salary =¢(60000, 45000, 75000, 84000, 20000)

2. Display structure and summary of the above data frame.

3. Extract the emp_name and salary columns from the above data frame.

4. Extract the employee details whose salary is less than or equal to 60000.
1. Create a Data Frame
emp_id <-¢(1:5)
emp_name <- ¢("Rick", "Dan", "Michelle", "Ryan", "Gary")
start_date <- ¢("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")
salary <- ¢(60000, 45000, 75000, 84000, 20000)

employee <- data.frame(emp_id, emp_name, start_date, salary)

print(employee)

Output:
emp_id emp_name start_date salary
1 Rick 2012-01-01 60000
2 Dan 2013-09-23 45000
3 Michelle 2014-11-15 75000
4 Ryan 2014-05-11 84000
5 Gary 2015-03-27 20000

2. Display Structure and Summary
str(employee)

summary(employee)

Structure Output:
'data.frame': 5 obs. of 4 variables:

$emp_id :int 12345

$ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ...
$ start_date: chr "2012-01-01""2013-09-23" "2014-11-15" "2014-05-11" ...
$ salary :num 60000 45000 75000 84000 20000

Summary Output:
emp_id emp_name start_date salary
Min. :1 Length: 5 Length: 5 Min. :20000

1st Qu.:2 Class :character Class :character 1st Qu.:45000

Median :3 Mode :character Mode :character Median :60000

Mean :3 Mean :56800
3rd Qu.:4 3rd Qu.:75000
Max. :5 Max. :84000

3. Extract emp_name and salary columns
employee_subset <- employee][, c("emp_name", "salary")]

print(employee_subset)

Output:
emp_name salary
Rick 60000
Dan 45000
Michelle 75000
Ryan 84000
Gary 20000

4. Extract employee details with salary = 60000
employee _salary <- subset(employee, salary <= 60000)

print(employee _salary)

Output:
emp_id emp_name start_date salary
1 Rick 2012-01-01 60000
2 Dan 2013-09-23 45000
5 Gary 2015-03-27 20000

18. Write scriptin R for creating subsets:
Consider the following data frame:

course id class marks
1 11 1 56
2 12 p. 75
3 13] 48
4 14 2 69
5 15 | 84
6 16 y 53

i) Create a subset of course less than 5 by using [] brackets and demonstrate the output.
ii) Create a subset where the course column is less than 4 or the class equals to 1 by using
subset() function and demonstrate the output.

(i) Subset of course less than 5 using [] brackets
subset1 <- df[df$course < 5,]

print(subset1)

Output:
course id class marks
1 11 1 56
2 12 2 75
3 13 1 48
4 14 2 69

(ii) Subset where course <4 or class == 1 using subset() function
subset2 <- subset(df, course <4 | class == 1)

print(subset2)

Output:
course id class marks
1 11 1 56
2 12 2 75
3 13 1 48
5 15 1 84

19. Write the script to sort the values contained in the following vector in ascending order and
descending order: (46, 23, 15, 38, 98, 56, 28, 78). Demonstrate the output. #

We are given the vector:
vec <- c(46, 23, 15, 38, 98, 56, 28, 78)

1. Sorting in Ascending Order
Use the sort() function:

sort(vec)
Output: 1523 28 38 46 56 78 98
sort() by default arranges elements in ascending order.

2. Sorting in Descending Order
Use sort() with the decreasing=TRUE argument:

sort(vec, decreasing=TRUE)
Output: 98 78 56 46 38 28 23 15

decreasing=TRUE tells R to sort in descending order.

20. List and explain various types of data structures in R.

R provides various data structures to efficiently store, organize, and manipulate data. These
include basic and advanced structures depending on data type and dimensionality.

1. Vector

A vector is the simplest and most common data structure in R. It is a sequence of elements that
are all of the same data type — numeric, character, or logical.
Example:

v <-¢(10, 20, 30, 40)

2. List

A listis a collection of elements that can be of different data types, such as numbers, strings,
vectors, matrices, or even other lists. It is often used to store complex or hierarchical data.
Example:

lst <- list(hame="John", age=25, scores=c(80, 85, 90))

3. Matrix

A matrix is a two-dimensional data structure containing elements of the same type, arranged in
rows and columns. It is mainly used for mathematical and statistical operations.
Example:

m <- matrix(1:9, nrow=3, ncol=3)
4. Array

An array is a multi-dimensional extension of a matrix, capable of storing data in more than two
dimensions. All elements must be of the same data type.
Example:

arr <- array(1:12, dim=c(3,2,2))

5. Data Frame

A data frame is a tabular data structure similar to a spreadsheet or database table. Each column
can hold different data types, such as numeric, character, or logical values.
Example:

df <- data.frame(ID = c(1, 2, 3), Name =c("A", "B", "C"), Marks =c(90, 85, 88))

6. Factor

A factor is used to represent categorical data, such as gender or grade levels. It stores unique
category labels as levels and is useful for statistical modelling.
Example:

gender <- factor(c("Male", "Female", "Male"))

21. Name and explain the operators used to form data subsetsin R. #

In R, subsetting is the process of extracting parts of a data frame. R provides several operators
and functions for this purpose.

Using following data frame for all examples:

df <- data.frame(name=c("Mark", "Fred", "Cyrus"),
age=c(20,21,22),
marks=c(85,90,88))

1. Square Brackets []

Extract elements by position or condition.

Examples:

df[1,] # Output: Row 1 > name="Mark", age=20, marks=85

dff, 2] # Output: Column 2> 2021 22

2. Double Square Brackets [[1]

Extract a single column as a vector.

Examples:

df[[1]] # Output: "Mark" "Fred" "Cyrus" (first column)
df[["marks"]] # Output: 8590 88 (marks column)

3. Dollar Sign $

Access named columns directly.

Examples:

df$name # Output: "Mark" "Fred" "Cyrus"
df$marks # Output: 8590 88

4. subset() Function

Extract rows or columns based on a condition.

Examples:

subset(df, age > 20) # Output: name="Fred", "Cyrus"; age=21,22; marks=90,88

subset(df, age > 20, select=name) # Output: (only ‘name’ column) "Fred" "Cyrus"

22. Explain the various functions provided by R to combine different sets of data. #
1. rbind() - Row Binding
o Combines two or more data frames or vectors by adding rows.
o Example: rbind(df1, df2) joins df2 below df1 (same column names required).
2. cbind() - Column Binding
o Combines data frames, matrices, or vectors by adding columns.
o Example: cbind(df1, df2) adds columns of df2 beside df1.
3. merge() - Database-style Join
o Merges two data frames based on common columns or row names (like SQL join).
o Example: merge(df1, df2, by ="id").
4. append() - Add Elements to a Vector
o Adds new elements to an existing vector.
o Example: append(x, y) adds vectory to x.
5. bind_rows() and bind_cols()
o Enhanced versions of rbind() and cbind() that handle mismatched column names easily.

o Example: bind_rows(df1, df2).

Asked once:

indicates 5-mark question
1. Introduction to Big Data and Hadoop

1. Secondary Name is a backup of Name node. Is this statement True or False? Justify your
answer. #

Answer: False

Justification:

The Secondary NameNode is not a backup of the NameNode. It only helps by periodically merging
the NameNode’s edit logs and Fslmage to create a new checkpoint. This process prevents the logs
from growing too large and improves system performance.

If the NameNode fails, the Secondary NameNode cannot take its place since it doesn’t store the
most recent metadata. It only maintains a checkpoint copy, which can be used later to recover the
system manually.

2. Explain how big data problems are handled by Hadoop system. #
Hadoop is specifically designed to solve big data challenges by providing:

Distributed Storage:
Hadoop uses HDFS (Hadoop Distributed File System) to split large datasets into smaller blocks
and store them across multiple nodes, allowing scalable and efficient storage.

Parallel Processing:
Hadoop’s MapReduce framework processes data in parallel across cluster nodes, significantly
speeding up computation.

Fault Tolerance:
Hadoop automatically replicates data across nodes. If one node fails, another copy is used,
preventing data loss and ensuring continuous processing.

Scalability:
Hadoop can easily scale from a few machines to thousands; adding more nodes increases its
capacity to handle more data.

Cost-Effectiveness:
Hadoop runs on low-cost commodity hardware, making it an affordable solution for storing and
processing massive datasets.

3. What is the difference between traditional RDBMS and Hadoop? #

Parameter Traditional RDBMS Hadoop
Data Type Handles structured data only. Handles structured, semi-structured,
and unstructured data.

Storage Stores data on a single centralized | Stores data in a distributed manner
server. using HDFS across multiple nodes.

Processing Uses sequential processing (one Uses parallel processing.
task at atime).

Scalability Vertically scalable — limited by Horizontally scalable — add more nodes
server capacity. to increase capacity.

Cost Requires expensive high-end Runs on low-cost commodity hardware,
hardware. making it economical.

Fault No built-in fault tolerance — data Highly fault-tolerant — data replicated

Tolerance loss if server fails. across nodes.

Data Volume
Handling

Best for small to medium datasets.

Designed to handle massive datasets
(Big Data) efficiently.

4. Distinguish between Name node and Data node. 1

Aspect NameNode DataNode

Role Acts as the master in HDFS Acts as the slave that stores actual
architecture. data.

Function Manages metadata —file Stores and retrieves data blocks when
names, block locations, and requested by clients or NameNode.
directory structure.

Storage Does not store actual data, Stores the actual file data in the form

only metadata.

of blocks.

Failure Impact

Failure may cause the whole
HDFS to stop working.

Failure affects only the data stored on
that specific node.

Communication

Coordinates with clients and
DataNodes.

Sends heartbeats and block reports to
NameNode.

Data Handling

Does not perform any data
processing.

Performs read/write operations on
data blocks.

Quantity in Cluster

Usually one active NameNode.

Multiple DataNodes across the cluster.

5. What are the Core Hadoop components? Explain in detail.

Hadoop mainly consists of three core components: HDFS, YARN, and MapReduce which work
together to store and process large-scale data efficiently.

1. Hadoop Distributed File System (HDFS)

HDFS is the storage layer of Hadoop that stores huge data files across multiple machines in a
distributed manner. It provides fault tolerance and high throughput access to data.
It consists of two main components:

« NameNode: The master node that stores metadata such as file names, locations, and
block information.

« DataNode: The worker nodes that actually store the data blocks and respond to read/write
requests from clients.

2. YARN (Yet Another Resource Negotiator)

YARN acts as the resource management layer of Hadoop. It manages and allocates system
resources among different applications and schedules their execution.
It consists of:

« ResourceManager: Manages global resource allocation.
« NodeManager: Runs on each node and reports resource usage to the ResourceManager.

« ApplicationMaster: Handles the execution and coordination of each application running
on the cluster.

3. MapReduce

MapReduce is the data processing framework of Hadoop that allows parallel processing of large
datasets across clusters.
It works in two phases:

« Map Phase: Divides the input into key-value pairs for processing.
« Reduce Phase: Aggregates the intermediate results to produce final output.

Example:
In a word count program, the Map phase emits (“word”, 1) pairs for each occurrence, and the
Reduce phase sums these to get the total count for each word.

2. Hadoop HDFS and MapReduce

6. Explain selection and projection relational algebraic operation using MapReduce.
1. Selection Operation (o)

« Definition:
The selection operation retrieves rows from a relation that satisfy a given condition. It is
represented as o condition (R).
Example: o age > 25 (Employee) - selects records where age > 25.

Implementation using MapReduce:

« Map Phase: Each mapper checks if the record satisfies the condition (e.g., age > 25). If
true, it emits the record.

« Reduce Phase: The reducer collects and outputs all filtered records.
Example Input:
(John, 24), (Ravi, 30), (Asha, 28)
Output (c age > 25):
(Ravi, 30), (Asha, 28)

2. Projection Operation (m)

« Definition:
The projection operation extracts specific columns (attributes) from a relation. It is
represented as 1t column_Llist (R).
Example: T name, age (Employee) > selects only ‘name’ and ‘age’ columns.

Implementation using MapReduce:
« Map Phase: Each mapper reads the record and outputs only the required columns.
« Reduce Phase: The reducer removes duplicate records (if any).

Example Input:

(ID, Name, Age, Salary)

(1, John, 24, 40000)

(2, Ravi, 30, 55000)

Output (m name, age):

(John, 24)

(Ravi, 30)

7. Explain how node failure is handled in Hadoop. #

1. Heartbeat Mechanism:
Each DataNode sends regular heartbeats to the NameNode to indicate it is active and
functioning.

2. Failure Detection:
If the NameNode does not receive a heartbeat from a DataNode within a specific time, it
marks that node as dead or failed.

3. Data Replication:
Since HDFS stores multiple replicas of each data block, the NameNode ensures data
remains available even if one node fails.

4. Re-replication:
The NameNode automatically creates new replicas of the lost data blocks on healthy
DataNodes to maintain the replication factor.

5. Automatic Recovery:
Tasks running on the failed node are reassigned to other active nodes, ensuring continuous
processing and fault tolerance.

8. What is function of Map Tasks in the Map Reduce framework? Explain with the help of
an example. 3

Function: The Map task processes large datasets in parallel by splitting them into smaller
chunks. Each map function takes input as key-value pairs, performs filtering, sorting, or
transformation, and outputs intermediate key-value pairs for the Reduce phase.

Example:
Suppose we want to count word occurrences in a text file:

o Input: "Hadoop is fast, Hadoop is reliable"
« Map Output:

o (Hadoop, 1)

o (is, 1)

o (fast, 1)

o (Hadoop, 1)

o (is, 1)

o (reliable, 1)
Each word is treated as a key, and the value 1 represents one occurrence, which is later
aggregated by the Reduce task.

9. Why is HDFS more suited for applications having large datasets and not when there are
small files? Elaborate. #

. Designed for Large Files: HDFS is optimized to store and process very large files (GBs/TBs)
efficiently.

. NameNode Memory Limitation: Each file and block is tracked by the NameNode,
consuming memory. Too many small files can overload it.

. High Metadata Overhead: Managing thousands of small files increases metadata overhead,
slowing down the system.

. Poor Block Utilization: Small files don’t fully use HDFS block space, wasting storage
capacity.

. Reduced Processing Efficiency: MapReduce performs better with large, continuous data
blocks, not scattered small files.

10. Name the three ways that resources can be shared between computer systems. Name
the architecture used in big data solutions.

Three Ways Resources Can Be Shared Between Computer Systems

1. Time Sharing:

« Multiple users or programs use the same system resources (CPU, memory, I/0O) one after
another for short time slots.

« The switching happens so quickly that it feels like all are running at the same time.
« Example: Many users working on a mainframe through different terminals.
2. Space Sharing:

« The system divides physical resources (processors, memory, or storage) among users or
tasks at the same time.

« Each task gets its own dedicated portion, allowing true parallel work.
« Example: Different nodes in a cluster working on separate parts of a job.
3. Resource Pooling / Data Sharing:

« Resources from multiple computers are shared over a network to perform data storage or
computation.

« Common in distributed, grid, or cloud systems.

« Example: Hadoop HDFS, cloud platforms, or grid computing.

Architecture Used in Big Data Solutions

« Big Data systems typically use a Distributed Computing Architecture, following a Shared-
Nothing Architecture model.

« Inthis design, each node in the cluster operates independently, with its own memory and
disk, minimizing contention for shared resources.

« Examples: Hadoop, Spark.

3. NoSQL

11. Demonstrate how business problems have been successfully solved faster, cheaper
and more effectively considering NoSQL Google’s Big case study. Also illustrate the
business drivers and the findings in it. #

Google developed Bigtable, a NoSQL column-family database, to manage and process massive
amounts of web data efficiently across thousands of servers.

How it solved business problems:

« Faster: Provided quick access to structured and semi-structured data for services like
Gmail, YouTube, and Google Maps.

« Cheaper: Used clusters of commodity hardware instead of expensive mainframes.

« More Effective: Scalable and fault-tolerant storage enabled handling of petabytes of data
with low latency.

Business Drivers:
« Need for real-time access to web-scale data.
« Demand for scalable, distributed storage.
Findings:
« Bigtable became the foundation for many Google services.

« Inspired open-source systems like HBase and Cassandra.

12. Demonstrate how business problems have been successfully solved faster, cheaper
and more effectively considering NoSQL Google’s MapReduce case study. Also
illustrate the business drivers and the findings in it. 1

Google introduced MapReduce, a programming model for processing and generating large
datasets in parallel using distributed clusters.

How it solved business problems:
« Faster: Enabled parallel data processing on thousands of machines.
« Cheaper: Reduced infrastructure cost by using commodity hardware.

« More Effective: Simplified large-scale computations like indexing web pages and data
mining.

Business Drivers:
« Need to process huge web data efficiently.

« Desire to automate parallel programming and fault recovery.

Findings:
« MapReduce drastically reduced data processing time.

« Formed the core of Hadoop’s architecture, influencing global Big Data processing
frameworks.

13. Explain CAP. How is CAP different from ACID property in databases? #

The CAP Theorem, proposed by Eric Brewer states that a distributed system can provide only two
of the following three guarantees at the same time:

1. Consistency (C): Every node sees the same data at the same time.
2. Availability (A): Every request receives a response, even if some nodes fail.

3. Partition Tolerance (P): The system continues to function despite network failures or
communication breaks.

Aspect CAP Theorem ACID Properties

Applies to Distributed systems like NoSQL. Traditional relational databases.

Goal Balances consistency, availability, | Ensures reliable and error-free
and partition tolerance. transactions.

Components Consistency, Availability, Partition | Atomicity, Consistency, Isolation,
Tolerance. Durability.

Property Cannot achieve all three Tries to achieve all four properties

Handling properties at once. together.

Examples NoSQL systems (e.g., Cassandra, | RDBMS systems (e.g., MySQL, Oracle).
MongoDB).

14. Describe the four ways by which big data problems are handled by NoSQL.

NoSQL systems are built to efficiently handle massive, distributed, and fast-growing datasets.
They achieve scalability, reliability, and high performance through the following four key
techniques:

1. Moving Queries to the Data (Not Data to Queries):
Instead of transferring large datasets over the network, NoSQL systems send queries
directly to the data nodes where the data resides. This reduces network load, speeds up
processing, and returns only the final results to the user.

2. Even Data Distribution using Hash Rings:
NoSQL databases use hash rings to evenly distribute data across all nodes in the cluster.
Each piece of data is assigned a node based on its hash key, ensuring balanced workload
and seamless scalability when new nodes are added.

3. Replication for Faster Reads and High Availability:
Data is replicated across multiple nodes so that reads can be served from any replica. This
increases read performance and ensures data availability even if a node fails, maintaining
fault tolerance and reliability.

4. Distributing Queries Evenly Among Data Nodes:
Incoming queries are distributed evenly across all available data nodes, which process them
in parallel and send results back to a central query analyzer. This parallelism improves query
speed, scalability, and overall system throughput.

4. Mining Data Streams

15. Create a Bloom filter with the following parameters:
Size of the bitarraym=8
Hash functions:
h,(x)=xmod m
h,(x) =(2x+ 1) mod m
h;(x) =(3x+2) mod m
(i) Insert the following elements into the Bloom filter: 12, 25, 30, 5
(ii) Checkifthe following elements are present in the Bloom filter: 6, 55
(iii) Discuss the results of your checks, identifying which elements are
true positive and which is true negative.

Given:
« Sizeofbitarraym = 8

« Hash functions:
h; (x) = xmod8
h,(x) = (2x+ 1)mod8
h;(x) = (3x + 2)mod8

(i) Insert the elements: 12, 25, 30, 5
We start with an 8-bit array initialized to O:

[0,0,0,0,0,0,0,0]

For 12:

e h;(12) =12mod8 =4

e hy,(12) =(2X12+1)mod8 = 25mod8 =1

e h3(12) =(3%Xx 12+ 2)mod8 = 38mod8 = 6
> Set bits at positions 1, 4, 6:

[0,1,0,0,1,0,1,0]

For 25:

« h;(25)=25mod8 =1

e hy(25)=(2%X25+1)mod8 = 51mod8 = 3

e« h3(25)=(3%X25+2)mod8 =77mod8 =5
> Set bits at positions 1, 3, 5:

[0,1,0,1,1,1,1,0]

For 30:

e h;(30) =30mod8 =6

e hy,(30)=(2%X30+1)mod8 = 61mod8 =5

e h3(30)=((3%x30+2)mod8 =92mod8 = 4
> Set bits at positions 4, 5, 6 (already 1s):

[0,1,0,1,1,1,1,0]

For 5:

« h;(5) =5mod8 =5

e h,(5)=(2X%X5+4+1)mod8=11mod8 =3

e h3(5)=(3X%X5+4+2)mod8=17mod8 =1
> Set bits at positions 1, 3, 5 (already 1s):

Final Bloom Filter after insertion:

[0,1,0,1,1,1,1,0]

(ii) Check elements: 6, 55
For 6:
e« hi(6) =6mod8 =06
e h,(6)=(2X6+1)mod8 =13mod8 =5
e h3(6)=(3%X6+2)mod8 =20mod8 =4
> Bits 4,5,6=(1,1,1)
All bits =1 > Element 6 is possibly present
For 55:
e h;(55)=55mo0d8=7
e hy,(55)=(2X%Xx55+1)mod8 =111mod8 =7
e« h3(55)=(3%X55+2)mod8 =167mod8 =7
> Only bit 7 checked (bit 7 = 0)

Bit 7 =0 > Element 55 is definitely not present

(iii) Discussion of Results

Element 6 is a false positive since all its bits (4, 5, 6) were 1 due to previous insertions, though it
wasn’tinserted.

Element 55 is a true negative as one of its bits (7) was 0, correctly indicating it wasn’t inserted;
Bloom filters never give false negatives.

16. List and explain the different issues and challenges in data stream query processing. #
The main issues and challenges in data stream query processing are:

1. Unbounded Data Streams: Streams are continuous and infinite, making it impossible to
store all data; systems must process data on-the-fly.

2. High Data Arrival Rate: Data arrives rapidly, requiring real-time or near-real-time processing
with minimal delay.

3. Memory Constraints: Limited memory forces use of approximations, sampling, or
summarization techniques.

4. Out-of-Order and Late Data: Data may arrive late or out of sequence, complicating
accurate query results.

5. Dynamic Query Requirements: Continuous queries need to adapt to changing data
patterns, requiring flexible and efficient query optimization.

5. Real-time Big Data Models

17. What is a recommendation system? How is classification algorithm used in a
recommendation system?

A recommendation system is a tool that suggests relevant items (like movies, books, or
products) to users by analyzing their preferences, behavior, and interaction history. It predicts
what users might like and helps improve user experience and engagement.

Types of Recommendation Systems:
1. Content-Based Filtering: Recommends items similar to those the user has liked before.
2. Collaborative Filtering: Suggests items based on the preferences of users with similar tastes.

3. Hybrid Approach: Combines both content-based and collaborative methods.

Use of Classification algorithm in recommendation systems:

« Aclassification algorithm predicts whether a user will like or interact with an item, based
on features of the user and the item.

« Recommendation systems use classifiers (such as decision trees, SVM, logistic regression)
to assign items to categories like "Will Like" or "Will Not Like" for individual users.

« The system is trained on historical interaction data (clicks, ratings, purchases) to learn
patterns.

« Fornew items or users, the classifier infers preferences and recommends items predicted
as "liked" or relevant.

Example: In an online store, the classifier studies what the user has viewed or bought before
and recommends products the user is likely to like.

18. Write an algorithm for the Clique Percolation Method and discover the communities in
the given below graph using Clique Percolation Method with clique k=3.

Clique Percolation Method Algorithm (k=3)

1. Find all 3-cliques (triangles) in the graph: A 3-clique is a set of 3 nodes where every node
is connected to each other.

2. Build a clique adjacency graph: Two 3-cliques are adjacent if they share 2 nodes.

3. Identify communities: A community is a maximal set of adjacent k-cliques (connected
components in the clique graph).

Step 1: Find all 3-cliques:
« Clique1:A,B,C
« Clique2:B,C,D
« Clique3:D,G,H
« Clique4:F,G,H
« Clique5:D,F H
« Clique6:D,F, G
Step 2: Find Clique Adjacencies
Cliques that share 2 nodes (overlap):
« (A,B,C)<—>(B, C, D) (share B, C)
« (D, G, H)<—>(D,F H)(shareD, H)
« (D, G, H)<—>(F, G, H) (share G, H)
« (D,F H)<—>(D,F, G)(share D, F)
o (D,F H)<—>(F, G, H)(shareF, H)
« (D,F,G)<—>(F, G, H)(shareF, G)

Step 3: Group cliques into communities:

« Community 1:
Clique 1 and Clique 2
> Nodes: {A, B, C, D}

« Community 2:
Cliques 3,4, 5,6
(since they all overlap via pairs of nodes)
> Nodes: {D, F, G, H}

Community 1 Community 2

6. Data Analytics with R

19. Describe applications of data visualization.

Data visualization helps convert complex data into easy-to-understand visual formats like
charts, graphs, and dashboards. Its key applications include:

1.

Business Decision-Making:
Helps managers track sales trends, customer behaviour, and KPls to make data-driven
decisions.

. Scientific Research:

Enables researchers to analyze experimental results, correlations, and patterns quickly.

. Healthcare Analytics:

Used for monitoring patient health data, predicting disease outbreaks, and visualizing
medical reports.

. Financial Analysis:

Helps investors and analysts understand market trends, stock performance, and risk
factors.

. Social Media and Marketing:

Visualizes engagement metrics, campaign performance, and audience demographics to
improve marketing strategies.

. Government and Public Policy:

Used to present census data, crime rates, or pollution levels for better planning and
policy-making.

. Education and Learning:

Simplifies complex topics using interactive charts and dashboards to enhance
understanding.

. Big Data Analytics:

Helps detect hidden patterns, outliers, and relationships within large datasets efficiently.

20. List and explain various functions that allow users to handle data in R workspace with
appropriate examples.

1. getwd() - Get Working Directory
Shows the current working directory (where R reads/writes files).
getwd() # Output: "C:/Data/R "

2. setwd() — Set Working Directory
Changes the working directory to a specified folder.
setwd("C:/Data/R2") # Changes directory to R2

3. ls() - List Objects

Displays all objects currently in the R workspace.
x<-10

y<-c(1,2,3)

ls() # Output: "x" "y"

4. rm() - Remove Objects

Deletes one or more objects from the workspace.
rm(x) # removes object x

rm(list = ls()) # removes all objects

5. save() - Save Objects to a File

Saves selected objects in a .RData file for later use.
a<-5;b<-10

save(a, b, file = "mydata.RData") # Saves objects 'a' and'b'

6. load() - Load Saved Objects
Restores saved objects from an .RData file into the current session.
load("mydata.RData") # Loads objects 'a' and 'b’

7. history() - View Command History
Displays a list of previously executed R commands.
history()

8. summary() - Summarize Data
Gives statistical summary (min, max, mean, etc.) of a dataset.
summary(df) # Output: Min, Median, Max

9. quit() or () — Exit R (Optionally Save Workspace)
Ends the current R session and optionally saves the workspace image.

q() #orquit()

21. What are the advantages of using functions over scripts? #
Advantages of Using Functions over Scripts in R:

1. Code Reusability: Once a function is defined in R, it can be reused across multiple scripts
or projects.

2. Simplifies Debugging: Functions can be tested independently, making it easier to identify
and fix issues.

3. Improves Readability: Functions make R scripts cleaner and easier to understand by
grouping related operations.

4. Enhances Modularity: Large R programs can be broken into smaller functional parts for
better organization.

5. Supports Parameterization: Functions can take arguments, allowing flexible and dynamic
data analysisin R.

22. Write a script to create a dataset named data1 in R containing the following text:
Text: 2,3,4,5,6.7,7,8.1,9 #

Create a dataset named data1

datal1<-¢(2,3,4,5,6.7,7,8.1,9)

Display the dataset

print(datal) # Output:23456.778.19

23. Suppose you have two datasets A and B.
Dataset A has the following data: 6789
Dataset B has the following data: 1245
Which function is used to combine the data from both datasets into dataset C?
Demonstrate the function with the input values and write the output. #

In R, the ¢() function is used to combine two (or more) datasets (vectors) into one.
Demonstration with input values:

A<-c(6,7,8,9)
B<-c(1,2,4,5)

C<-c(A,B) #CombineAandBintoC
print(C)

Output:
67891245

24. The data analyst of Argon technology Mr. John needs to enter the salaries of 10
employees in R. The salaries of the employees are given in the following table:

Sr. No. | Name of employees | Salaries
1 Vivek 21000
2 Karan 55000
3 James 67000
4 Soham 50000
5 Renu 54000
6 Farah 40000
7 Hetal 30000
8 Mary 70000
9 Ganesh 20000
10 Krish 15000

i. Which R command will Mr. John use to enter these values demonstrate the output.
ii. Now Mr. John wants to add the salaries of 5 new employees in the existing table,
which command he will use to join datasets with new values in R. Demonstrate the
output.

i. Enter salaries of 10 employees in R

To enter data, Mr. John uses the data.frame() function.

Create the vectors

names <- ¢("Vivek", "Karan", "James", "Soham", "Renu", "Farah", "Hetal", "Mary", "Ganesh", "Krish")

salaries <- ¢(21000, 55000, 67000, 50000, 54000, 40000, 30000, 70000, 20000, 15000)

Create the data frame

employees <- data.frame(Name = names, Salary = salaries)

print(employees)

Output:

Name | Salary

Vivek 21000

Karan 55000

James | 67000

Soham | 50000

Renu 54000

Farah 40000

Hetal 30000

Mary 70000

Ganesh | 20000

Krish 15000

ii. Add 5 new employees and join with existing table

To add new rows (new employees), he uses the rbind() command to combine both datasets.
New employees data

new_names <- ¢("Rohit", "Sana", "Sameer", "Ahmed", "Wilson")

new_salaries <- ¢(72000, 46000, 38000, 58000, 53000)

new_employees <- data.frame(Name = new_names, Salary = new_salaries)
Combine datasets
all_employees <- rbind(employees, nhew_employees)

print(all_employees)

Output:

Name | Salary

Vivek 21000

Karan 55000

James | 67000

Soham | 50000

Renu 54000

Farah 40000

Hetal 30000

Mary 70000

Ganesh | 20000

Krish 15000

Rohit 72000

Sana 46000

Sameer | 38000

Ahmed | 58000

Wilson | 53000

25. The following table shows the number of units of different products sold on different

days:
Product Monday | Tuesday | Wednesday | Thursda | Friday
y
Bread 12 3 5 11 9
Milk 21 27 18 20 15
Cola Cans 10 | 33 6 12
Chocolate 6 7 4 13 12
bars
Detergent 5 8 12 20 23
Create five sample numeric vectors from this data. 1

Vector for Bread sales

bread <-¢(12, 3, 5,11, 9)

Vector for Milk sales

milk <- ¢(21, 27, 18, 20, 15)

Vector for Cola Cans sales
cola_cans<-¢(10,1, 33,6, 12)

Vector for Chocolate bars sales
choc-bars<-¢(6, 7,4,13,12)

Vector for Detergent sales

detergent <- c(5, 8, 12, 20, 23)

	Question bank
	1. Introduction to Big Data and Hadoop
	2. Hadoop HDFS and MapReduce
	3. NoSQL
	4. Mining Data Streams
	5. Real-time Big Data Models
	6. Data Analytics with R
	Asked once: 		1. Introduction to Big Data and Hadoop
	2. Hadoop HDFS and MapReduce
	3. NoSQL
	4. Mining Data Streams
	5. Real-time Big Data Models
	6. Data Analytics with R

