
Times asked: 6 times
5 times
4 times
3 times
2 times

1 time
indicates 5-mark question

Blockchain Question bank
1. Introduction to Blockchain

1. DiƯerentiate between public, private and consortium blockchain.
2. Explain Merkle tree with an example? Explain the structure of a Merkle tree.
3. State and explain various challenges that occurs while implementing blockchain.

2. Cryptocurrency

4. Write a short note on UTXO model of Bitcoin.
5. DiƯerentiate between hot and cold wallets. #
6. Explain the concept of double spending with a suitable example. #
7. Explain mining pool and its diƯiculty. How is it calculated in a proof of work? Explain with

an example.
8. What is cryptocurrency? Explain diƯerent types of cryptocurrencies.
9. DiƯerentiate between PoW, PoS, PoB, PoET.
10. How does PoW solve the problem of double spending? #
11. Explain the concept of an orphaned block. #

3. Programming for Blockchain

12. Write a program in solidity to implement multi-level inheritance.
13. Explain fallback function in solidity with an example.
14. Write and elaborate a code in solidity to explain visibility and activity qualifiers.
15. Explain view function and pure function in solidity with suitable examples.
16. What is a smart contract? What are the diƯerent types of smart contracts? #
17. Explain fixed and dynamic arrays in solidity with suitable examples.
18. Write a program in solidity to check whether anumber is prime or not. #

4. Public Blockchain

19. Describe the architecture of Ethereum.
20. Compare Bitcoin and Ethereum. #
21. Explain the following terms with respect to Ethereum: Miner and Mining Node, Gas,

Accounts, Ether, Transactions.
22. List and explain various types of test networks used in Ethereum.
23. Write a short note on Ethereum Virtual Machine.

5. Private Blockchain

24. Explain Hyperledger Fabric v1 architecture.
25. What is RAFT consensus algorithm? Explain in detail.
26. Explain state machine replication with suitable example.
27. Write a short note on PAXOS consensus algorithm.

6. Tools and Applications of Blockchain

28. Write a short note on Ripple.
29. Write a short note on Corda.
30. Write a short note on DeFi (Role of smart contracts, architecture, use in blockchain)

31. Write a short note on Quorum.

 1 2 3 4 5 6

2025 May 10 50 25 30 20 10
2024 Dec 20 25 25 15 40 20
2024 May 20 40 25 20 20 20
2023 Dec 15 35 20 25 40 10
2023 May 20 30 25 10 30 30
2022 Dec 20 25 40 15 25 20
Estimate 20 35-40 25 15-25 30-40 20

Total 105 205 160 115 175 110

Asked once:
1. Introduction to Blockchain

1. Explain the components of Blockchain.
2. Write a short note on Cryptography in Blockchain.
3. With a suitable diagram, explain the structure of a block header with a list of transactions.

2. Cryptocurrency

4. Write a short note on Mining pool and its methods.
5. What is transaction structure? Explain transaction life cycle in detail.
6. Write a short note on Consensus in Bitcoin.

3. Programming for Blockchain

7. Explain the role of address and address payable in solidity with example.
8. Describe how solidity supports multiple inheritance with an example. #
9. Write a program in solidity to find the second largest element in an array. #
10. Write a program in solidity to implement single inheritance.

4. Public Blockchain

11. List and explain various types of nodes used in Ethereum. #

5. Private Blockchain

12. What is a backup in Practical Byzantine Fault Tolerance (PBFT) algorithm?
13. Compare the role of MSP and Fabric CA. Explain their role in Hyperledger blockchain.
14. Compare BFT and PBFT consensus in detail.
15. How is a smart contract represented as a state machine. #

6. Tools and Applications of Blockchain
-

Blockchain Answer bank
indicates 5-mark question

1. Introduction to Blockchain

1. DiƯerentiate between public, private and consortium blockchain.

Aspect Public Blockchain Private Blockchain Consortium Blockchain

Organization
Type

Publicly accessible, no
central authority

Single entity or
organization

Multiple organizations

Users Anyone can join and
participate

Known, trusted
members

Known, trusted members

Access Open and transparent to
all

Fully restricted Partially open, shared
among members

Network Type Decentralized; zero points
of failure

Centralized; single
point of failure

Partially decentralized;
multiple points of failure

Operation Anyone can read, write,
and validate

Only authorized
users can transact

Only selected
organizations can validate
and transact

Verification Anyone can join
consensus and mine

Controlled by one
validator or admin

Only selected consortium
members validate

Immutability Secured by global
consensus

Secured by central
authority

Secured by consortium
consensus

Consensus
Mechanism

PoW, PoS, etc. PBFT, PoA, or
custom methods

PBFT, RAFT, or voting-
based methods

Security High — based on
cryptography and global
consensus

Moderate — relies
on internal control

High — depends on
consortium agreement

Trust Trustless — verified by
code

Trusted central
authority

Partial trust among
participants

Examples Bitcoin, Ethereum Hyperledger Fabric R3 Corda, Quorum

2. Explain Merkle tree with an example? Explain the structure of a Merkle tree.

A Merkle Tree (also called a Hash Tree) is a mathematical data structure used in blockchain to
eƯiciently and securely verify the integrity of large sets of data. It is composed of hashes of data
blocks and is named after Ralph Merkle, who patented the idea in 1979. It is stored in the block
header.

1. Leaf Nodes (Bottom Level):

 The lowest level consists of the original data blocks: A, B, C, and D.

 Each data block is hashed individually:

o hash 0-0 = hash(A)

o hash 0-1 = hash(B)

o hash 1-0 = hash(C)

o hash 1-1 = hash(D)

2. Intermediate Nodes:

 These nodes are computed by concatenating the hashes of their child nodes:

o hash 0 = hash(0-0 + 0-1) → combines hash(A) and hash(B)

o hash 1 = hash(1-0 + 1-1) → combines hash(C) and hash(D)

3. Root Node (Top Hash):

 The top of the tree, also called the Merkle Root, is computed by hashing the concatenation
of the two intermediate hashes:

o top hash = hash(hash 0 + hash 1)

Any change in any data block, for example A, will change its hash, aƯecting all parent hashes up
to the root.

3. State and explain various challenges that occurs while implementing blockchain.

1. Scalability – Current blockchains can process only limited transactions per second.
This limits their use in large-scale, high-speed applications.

2. Lack of Awareness – Many people don’t fully understand the value and uses of blockchain,
making adoption slow.
Without proper knowledge, organisations may hesitate to invest in it.

3. Limited Technical Talent – Skilled blockchain developers are few, making implementation
diƯicult. This shortage increases development time and costs.

4. High Energy Use – Proof-of-Work blockchains require large amounts of computing power,
resulting in high electricity costs and environmental impact.

5. Immutability Issues – Once data is recorded, it cannot be changed, which can cause
problems if corrections are needed.
This is helpful for security but inconvenient for fixing errors.

6. Security Risks – While the blockchain network is secure, smart contracts or applications
built on it can have bugs or be hacked.

7. Consensus Delays – The process of all nodes agreeing on a block can be slow and resource-
intensive.
More participants mean longer confirmation times for transactions.

8. Data Privacy Concerns – Blockchain’s transparency means recorded data is visible to all
participants, which can expose sensitive information.

2. Cryptocurrency

4. Write a short note on UTXO model of Bitcoin.

UTXO (Unspent Transaction Output)

o In Bitcoin, a UTXO is the amount of digital currency remaining after a transaction, which
can be used as input for future transactions.

o A transaction’s output remains “unspent” until it is used as an input in another transaction.

o When a transaction is completed, any unspent amount is stored back into the blockchain
as a new UTXO.

UTXO Example:

 You have three UTXOs:

o John → 0.1 BTC

o Sarah → 0.7 BTC

o Sam → 0.4 BTC

 You want to buy a car costing 0.5 BTC. In Bitcoin, you must use whole UTXOs as inputs.

 Use Sarah’s 0.7 BTC UTXO:

 Input: 0.7 BTC from Sarah

Output: 0.5 BTC to seller

 0.2 BTC back to me

 The remaining 0.2 BTC can be returned as change, used as a transaction fee, or sent to
someone else. If no recipient is specified, it becomes a miner fee:

 Input: 0.7 BTC from Sarah

Output: 0.5 BTC to seller

 0.2 BTC assumed as fee

 After this transaction, Sarah’s 0.7 BTC UTXO is spent, and new UTXOs are created for the
seller and miner.

 UTXOs exist only until spent in another transaction.

Key Features of UTXO Model:

1. Immutable & Traceable: Every UTXO is permanently on the blockchain and traceable.
2. Atomic Transactions: UTXOs are fully consumed in a transaction; partial spending isn’t

allowed.
3. Stateless Balance: Wallet balance = sum of all unspent UTXOs; no stored account

balances.
4. No double spending: Spent UTXOs cannot be reused.
5. Parallel Verification: Independent UTXOs enable simultaneous transaction processing.

5. DiƯerentiate between hot and cold wallets. #

Basis Hot Wallet Cold Wallet

Connectivity Always connected to the internet.
Transfers occur online in real time.

Operates oƯline; coins are transferred
with a switch between online/oƯline
modes.

Security Less secure; vulnerable to hacking
since private keys are stored
online.

More secure; private keys are stored
oƯline, away from internet threats.

Price Cheaper, as they don’t require
additional hardware.

Costlier due to need for hardware like
USB drives or hardware wallets.

Acceptance Accepted by all cryptocurrencies
for storing and transactions.

Only reputed cryptocurrencies may be
compatible with cold wallets.

Asset Loss Risk If the exchange or device is
compromised, access to coins
can be lost.

Even if exchange closes, coins remain
safe as they are not stored online.

Access/Speed Suitable for fast, daily trading and
instant exchange.

Slower and less eƯicient for trading
due to manual transfers.

Backup and
Recovery

Usually oƯer easy recovery with
password.

If hardware is lost or damaged without
backup, recovery can be diƯicult.

Best Use Case Ideal for active traders needing
frequent access to funds.

Ideal for long-term holders (HODLers)
seeking maximum security.

6. Explain the concept of double spending with a suitable example. #

Double spending problem:

 Double spending is a possible problem in digital currencies, where the same funds or token
are spent more than once.

 It happens when someone tries to use the same digital coin in two or more diƯerent
transactions to cheat the system.

 This is possible because digital files can be easily copied or duplicated.
 Unlike physical cash, which cannot be copied, digital currency exists as data and if it is not

properly protected, it can be used again.
 Blockchain solves this issue by verifying every transaction through consensus and recording it

permanently on a distributed ledger.

Example: If Alice sends 1 BTC to Bob, she cannot send the same 1 BTC to Carol again since the
first transaction is already recorded on the blockchain.

7. Explain mining pool and its diƯiculty. How is it calculated in a proof of work? Explain with
an example.

Mining Pool

 A cryptocurrency mining pool is a group of miners who share their computational
resources.

 By combining their resources, miners increase the probability of finding a block or
successfully mining cryptocurrency.

 If the pool is successful and earns a reward, it is distributed among members according to
their contribution.

Mining DiƯiculty

 It is defined as the measure of how diƯicult it is to find a hash value below a specified
target.

 Bitcoin has a global diƯiculty that changes every 2016 blocks (approximately every two
weeks). The aim is to generate one block every 10 minutes, which results in 2016 blocks in
two weeks.

 Adjustment process:

o If the last 2016 blocks took less than two weeks to mine then diƯiculty increases.

o If it took more than two weeks then diƯiculty decreases.

 Formula:

 This ensures the network dynamically adjusts to maintain stable block generation times.

8. What is cryptocurrency? Explain diƯerent types of cryptocurrencies.

Cryptocurrency is a digital or virtual currency that uses cryptography for security and operates
on a decentralized blockchain network.
It enables peer-to-peer transactions without intermediaries like banks and ensures transparency
and immutability through blockchain.

Types of Cryptocurrency

1. Bitcoin

 Bitcoin (BTC) is the original and most well-known cryptocurrency, introduced in 2009 by an
anonymous person or group known as Satoshi Nakamoto.

 It runs on a decentralized blockchain and enables peer-to-peer digital transactions
without banks or intermediaries.

 Bitcoin is seen as a store of value and a potential alternative to traditional fiat currencies.

2. Altcoin

 Altcoin is a general term that refers to any cryptocurrency other than Bitcoin, with the term
being a combination of "alternative" and "coin."

 Altcoins can have various features, purposes, and underlying technologies that
diƯerentiate them from Bitcoin.

 Examples of altcoins include Ethereum, Ripple, Litecoin, Cardano, and many others.

3. Token

 A token is a digital unit of value created on an existing blockchain (like Ethereum) for use in
projects or decentralized applications (DApps)

 Used for purposes such as accessing services, voting, or representing assets, and can be
traded on exchanges.

Types of Tokens

1. Utility Tokens – Give access to platform services or products, like BNB or ETH, and act as
digital coupons (do not represent ownership).

2. Security Tokens – Represent ownership or investment in assets or companies and are
regulated like securities.

9. DiƯerentiate between PoW, PoS, PoB, PoET.

Parameter PoW (Proof of
Work)

PoS (Proof of
Stake)

PoB (Proof of
Burn)

PoET (Proof of
Elapsed Time)

Consensus
Basis

Solving complex
mathematical
puzzles

Validators
chosen based on
stake

Validators
chosen based on
coins burned

Random wait
time verified by
trusted hardware

Energy
Consumption

High Low Low to moderate Very low

Security High High (if properly
implemented)

Depends on
coins burned

High (depends on
TEE trust)

Speed Slow Fast Moderate Very fast

Scalability Poor High High Very high

Capital
Requirement

High (hardware,
energy)

Medium to high
(staked coins)

High (coins to
burn)

Low (TEE access
only)

Environmental
Impact

High Low Low Very low

Block Time
Slow (e.g., ~10
minutes for
Bitcoin)

Fast (e.g.,
Ethereum PoS)

Variable,
generally faster
than PoW

Very fast

Reward
Distribution

Block reward +
transaction fees

Staking rewards
+ fees

Rewards
proportional to
coins burned

Rewards for valid
wait completion

Attack
Resistance

Strong (requires
51% hash rate)

Risk of 51%
staking attack

Depends on
burn cost

Relies on trusted
hardware
security

Example Bitcoin, Litecoin Ethereum (Post-
Merge), Cardano

Slimcoin Hyperledger
Sawtooth

10. How does PoW solve the problem of double spending? #

Proof of Work stops double spending by ensuring that adding transactions to the blockchain
requires a huge amount of computing eƯort.

 In PoW, miners compete to solve a diƯicult mathematical puzzle.

 The first miner to solve it gets to add a new block of transactions to the blockchain.

 Once added, the block is linked to all previous blocks, making it very hard to change
without redoing the work for all following blocks.

 If someone tries to spend the same coins twice, they will have to outpace the entire
network’s mining power to rewrite history, which is practically impossible.

11. Explain the concept of an orphaned block. #

An orphaned block is a valid block that was successfully mined but not included in the main
blockchain because another block at the same height was accepted first. The miner does not
receive a reward, but orphaned blocks help keep the blockchain consistent and secure.

How It Happens:
 Two miners find a valid block almost simultaneously.

 Both blocks are broadcast to the network.

 Some nodes accept one block, while others accept the other.

 Eventually, one branch of the chain becomes longer (more proof of work), and the network
adopts it as the main chain.

 The other block (on the shorter branch) gets discarded, this is the orphaned block.

Example:
If Miner A and Miner B both mine Block #101 at the same time, and Miner A’s block gets extended
first, then Miner B’s block becomes orphaned.

3. Programming for Blockchain

12. Write a program in solidity to implement multi-level inheritance.

// Base contract

contract RectangleDimensions {

 uint internal a = 10;

 uint internal b = 20;

 uint internal c = 30;

 function settingDimensions() external view returns (uint, uint) {

 return (a, b);

 }

}

// Derived contract 1

contract Area is RectangleDimensions {

 function calculateArea() internal view returns (uint) {

 return a * b;

 }

}

// Derived contract 2

contract Volume is Area {

 function calculateVolume() external view returns (uint) {

 return calculateArea() * c;

 }

}

Volume inherits from Area, and Area inherits from RectangleDimensions, making it a multi-level
hierarchy.

13. Explain fallback function in solidity with an example.

 A fallback function in Solidity is a special function that is executed when a contract receives
Ether or when a function call does not match any existing function in the contract.

 It is unnamed, cannot take arguments, and does not return anything.

 Fallback functions are useful for handling plain Ether transfers or catching invalid function
calls.

 In Solidity ≥0.6.0, there are two special functions:

1. receive() → called when Ether is sent with empty calldata.

2. fallback() → called when calldata does not match any function or when receive() is absent.

Example:

contract FallbackExample {

 uint public lastReceived;

 // Fallback function

 fallback() external payable {

 lastReceived = msg.value;

 }

 // Function to check contract balance

 function getBalance() public view returns (uint) {

 return address(this).balance;

 }

}

Explanation of example:

 If you send Ether to this contract without calling any function, the fallback() function is
triggered.

 getBalance() lets you check how much Ether the contract has received.

14. Write and elaborate a code in solidity to explain visibility and activity qualifiers.

1. Visibility Qualifiers – Defines who can access a function or variable:

 public → accessible inside and outside the contract.

 private → accessible only inside the contract.

 internal → accessible inside the contract and derived contracts.

 external → accessible only from outside the contract (not internally).

2. Activity Qualifiers – Defines how a function interacts with the blockchain state:

 pure → does not read or modify state variables.

 view → reads but does not modify state variables.

 payable → can receive Ether.

 Default (no qualifier) → can read/write state variables.

Examples:

contract QualifiersExample {

 uint private x = 10; // private variable

 uint public y = 20; // public variable

 // Public function – can be called inside/outside contract

 function getY() public view returns (uint) {

 return y;

 }

 // Private function – accessible only inside this contract

 function getX() private view returns (uint) {

 return x;

 }

 // Internal function – accessible inside this contract and derived contracts

 function doubleX() internal view returns (uint) {

 return x * 2;
 }

 // External function – accessible only externally

 function add(uint a, uint b) external pure returns (uint) {

 return a + b;

 }

 // Payable function – can receive Ether

 function receiveEther() external payable {

 // Accepts Ether sent to contract

 }

15. Explain view function and pure function in solidity with suitable examples.

1. View Function:

 A view function reads state variables but does not modify them.

 It allows you to access contract data without creating a transaction.

 Calling a view function does not consume gas if called externally (no state change).

2. Pure Function:

 A pure function does not read or modify state variables.

 It works only with its inputs and returns a result.

 Pure functions are deterministic and always produce the same output for the same input.

Example:

contract FunctionExample {

 uint public x = 10;

 uint public y = 20;

 // View function – reads state but does not modify it

 function getX() public view returns (uint) {

 return x;

 }

 // Pure function – does not read or modify state, works only with inputs

 function add(uint a, uint b) public pure returns (uint) {

 return a + b;

 }

}

Explanation of Example:

 getX() → view function that reads state variable x.

 add() → pure function that only uses input parameters a and b.

16. What is a smart contract? What are the diƯerent types of smart contracts? #

A smart contract is a self-executing program stored on a blockchain, where the terms of an
agreement are directly written into code. When the specified conditions are met, it
automatically performs the agreed actions without the need for intermediaries. Smart
contracts are secure, transparent, and immutable, making them suitable for reliable
automation of transactions and processes.

Types of Smart Contracts

1. Smart Legal Contracts:
Digital versions of legal agreements that enforce terms automatically but remain legally
binding.
Example: Rental contract releasing access after payment.

2. Decentralized Applications (DApps):
Applications that run on blockchain using smart contracts for logic.
Example: Decentralized exchanges.

3. Decentralized Autonomous Organizations (DAOs):
Organizations governed entirely by smart contracts with rules and voting on-chain.

4. Smart Contracting Devices:
Combine smart contracts with IoT devices for automated physical actions.
Example: Smart lock opens when payment is confirmed.

17. Explain fixed and dynamic arrays in solidity with suitable examples.

1. Fixed-size Array:

 Declared with a specific size, e.g., uint[5] numbers;.

 Size cannot change after declaration.

 Useful when the number of elements is known in advance.

 Elements are stored in contiguous memory slots, so access is gas-eƯicient.

2. Dynamic Array:

 Declared without specifying size, e.g., uint[] numbers;.

 Size can grow or shrink at runtime using push() or pop().

 Useful when the number of elements is unknown or changes frequently.

 OƯers flexibility but slightly more gas cost due to dynamic storage.

Example:

contract ArrayExample {

 uint[3] fixedArray = [1,2,3]; // Fixed-size

 uint[] dynamicArray; // Dynamic

 function add(uint val) public {

 dynamicArray.push(val); // Add to dynamic array

 }

}

Explanation:

 fixedArray → size = 3, cannot grow.

 dynamicArray → size can increase at runtime with push().

18. Write a program in solidity to check whether a number is prime or not. #

contract PrimeCheck {

 function isPrime(uint n) public pure returns (bool) {

 if (n <= 1) {

 return false;

 }

 for (uint i = 2; i * i <= n; i++) {

 if (n % i == 0) {

 return false;

 }

 }

 return true;

 }

}

4. Public Blockchain

19. Describe the architecture of Ethereum.

Ethereum’s architecture consists of six functional layers, from the core consensus at the base to
user-facing DApps at the top. Each layer builds on the one below to enable secure,
interoperable, and decentralized applications.

Layer 0: Consensus Layer

 Responsible for agreeing on the state of the blockchain and validating new blocks.

 Ethereum uses the Proof of Stake (PoS) consensus mechanism after The Merge.

Layer 1: Economic Layer

 Deals with native tokens (e.g., Ether) that provide incentives for nodes to act honestly.

 Supports payment and rewards tied to computational or storage work.

Layer 2: Blockchain Services Layer

 Provides essential features like smart contracts, file storage, time-stamping, and
registries.

 Enables core programmable and service capabilities used by DApps and upper layers.

Layer 3: Interoperability Layer

 Handles exchange and value transfer between diƯerent tokens or blockchains.

 Supports atomic transactions, cross-chain messaging, and wider ecosystem integration.

Layer 4: Browser Layer

 User-facing software (like Mist, Omni Wallet) for accessing and interacting with DApps.

 Bridges users to the decentralized world by handling wallet, identity, and UI/UX.

Layer 5: DApps Layer

 Contains decentralized applications and autonomous organizations (DAOs) running on the
network.

 Delivers end-user services (from finance to cloud storage) that leverage the full blockchain
stack.

Ethereum Workflow: (Only asked once, along with architecture)

1. User Interaction: The user accesses a DApp through a web interface using wallets like
MetaMask.

2. Smart Contract Execution: The DApp sends transactions to smart contracts deployed on
the Ethereum network.

3. Transaction Validation: The transaction is broadcast to the Ethereum nodes in the P2P
network.

4. Consensus: Nodes use Proof of Stake (PoS) to validate and confirm the transaction.

5. Block Addition: The validated transaction is added to the Ethereum blockchain.

6. State Update: The blockchain state updates, and the result is reflected back to the DApp for
the user.

20. Compare Bitcoin and Ethereum. #

Basis Bitcoin Ethereum

Definition A decentralized digital currency
that can be transferred on the
peer-to-peer Bitcoin network.

A decentralized global software platform
powered by blockchain technology. Known
for its native cryptocurrency, Ether (ETH).

Purpose To replace national currencies
during the financial crisis of
2008.

To utilize blockchain technology for a
decentralized payment network and to
store computer code.

Smart
Contracts

Has smart contracts, but they
are not as flexible or complete
as Ethereum's.

Allows for the creation of smart contracts
that are computer codes stored on a
blockchain and executed when
predetermined conditions are met.

Smart Contract
Language

Written in programming
languages like Script and
Clarity.

Written in programming languages like
Solidity, Vyper, etc.

Transactions Generally, Bitcoin transactions
are only for keeping notes.

Ethereum transactions may contain
executable code.

Consensus
Mechanism

Uses Proof-of-Work (PoW). Uses Proof-of-Stake (PoS).

Block Time Approximately 10 minutes. Approximately 14 to 15 seconds.

Block Limit Has a block limit of 1 MB. Does not have a block limit.

Structure The structure is simple and
robust.

The structure is complex and feature-rich.

Rewards A miner gets nearly 6.25 BTC
along with some additional
rewards for successfully adding
a new block.

A miner gets nearly 5 ETH along with
some additional rewards for successfully
adding a new block.

Hash
Algorithm

Runs on the SHA-256 algorithm. Runs on the Keccak-256 algorithm.

Assets The asset of Bitcoin is BTC. The asset of Ethereum is Ether.

21. Explain the following terms with respect to Ethereum: Miner and Mining Node, Gas,
Accounts, Ether, Transactions.

1. Miner and Mining Node:

 Miner: A person or system that verifies transactions, creates new blocks, and earns Ether
as a reward.

 Mining Node: A computer in the network that performs mining tasks, helping validate
transactions and update the blockchain.

2. Gas:

 A measure of the computational eƯort needed to run transactions or smart contracts.

 Users pay Gas fees in Ether to reward miners and avoid unnecessary network load.

3. Accounts:

 Ethereum has two types of accounts:

1. Externally Owned Account (EOA): Controlled by private keys, can send/receive
Ether and initiate transactions.

2. Contract Account: Controlled by smart contract code, can execute code and
interact with other contracts.

4. Ether (ETH):

 The native cryptocurrency of Ethereum.

 Used to pay for transactions, gas fees, and act as a medium of value within the network.

5. Transactions:

 A signed message sent from one account to another.

 Can transfer Ether, interact with smart contracts, or deploy new contracts.

 Each transaction consumes Gas, and miners validate them before adding to the
blockchain.

22. List and explain various types of test networks used in Ethereum.

Test networks (testnets) are separate blockchains used for testing smart contracts and dApps
without risking real Ether (ETH). They mimic Ethereum’s mainnet environment but use tokens of
no monetary value.

1. Ropsten

 A Proof-of-Work (PoW) based testnet that behaves most like the Ethereum mainnet,
making it useful for realistic testing of contracts and dApps.

 Developers use test Ether here to simulate transactions before deployment.

2. Rinkeby

 Based on Proof-of-Authority (PoA), with validators chosen and operated by trusted entities
(like the Ethereum Foundation).

 Considered more stable than PoW testnets; test Ether here is requested through faucets,
often linked to social media verification.

3. Kovan

 Uses the Clique PoA consensus (diƯerent from Ropsten’s PoW).

 It provides a fast block time and supports Parity's Aura consensus engine.

4. Goerli

 A cross-client testnet, designed to work with multiple Ethereum clients like Geth, Besu,
and Nethermind.

 Combines PoW and PoA features, aiming to provide a stable testbed for both Ethereum 1.0
and Ethereum 2.0 projects.

23. Write a short note on Ethereum Virtual Machine.

The Ethereum Virtual Machine (EVM) is the runtime environment that executes Ethereum smart
contracts. Ethereum has its own Turing-complete language called Solidity, and the EVM
executes the compiled code.

It runs on top of the Ethereum network so that all nodes reach consensus on what code should
run at any time. Unlike Bitcoin, which only stores data, Ethereum also executes contract logic on
the blockchain. The EVM can run any kind of crypto-contract written in Solidity, enabling smart
contracts that automatically execute when conditions are met (or exit if conditions fail).

EVM Workflow:

 Developers write smart contracts using the Solidity programming language.

 The written code is compiled by the Ethereum compiler to produce bytecode.

 Compiled bytecode is a format the Ethereum Virtual Machine (EVM) can process.

 The EVM executes the bytecode on all Ethereum nodes, running the smart contract.

 The contract and all transactions are stored and managed in blocks on the Ethereum
blockchain.

Benefits:

 Executes untrusted code without risking data.

 Can run complex smart contracts.

 Distributed consensus and robustness against failure.

5. Private Blockchain

24. Explain Hyperledger Fabric v1 architecture.

Hyperledger Fabric v1 Architecture:

1. Client Application & SDK (HFC):

o The client is used by end-users to send transaction proposals to the network.

o The SDK (Software Development Kit) helps connect to peers and the ordering service.

2. Membership Services (MSP / Fabric-CA / External-CA):

o Handles identity management and authentication of all participants.

o Uses Certificate Authorities (Fabric-CA or External-CA) to issue digital certificates.

o Ensures only authorized users can access the blockchain.

3. Peers:

o Core components that maintain the ledger and execute chaincode (smart contracts).

o Two main roles:

 Endorser: Simulates and endorses (signs) transaction proposals.

 Committer: Validates and commits transactions to the ledger.

o Ledger: Stores all transactions and current world state.

o Chaincode: The smart contract defining business logic.

o Events: Notify clients when transactions are completed.

4. Ordering Service:

o Collects endorsed transactions from clients.

o Orders them chronologically and creates blocks.

o Delivers these blocks to all peers for validation and commitment.

5. Admin:

o Manages the network configuration, permissions, and setup of peers and orderers.

o Typically has control over membership and policies.

25. What is RAFT consensus algorithm? Explain in detail.

RAFT is a leader-based distributed consensus algorithm designed to be simpler and more
understandable than PAXOS while achieving the same goal: maintaining consistency across
multiple nodes in a distributed system.

Follower:
Every server starts as a follower. It waits for messages from a leader.
If it doesn’t hear from a leader for a while (times out), it becomes a candidate.

Candidate:
The candidate starts an election and asks other servers for votes.

 If it gets votes from the majority, it becomes the leader.

 If it doesn’t win, it may start a new election after timing out.

 If it discovers a server with a higher term (newer leader), it goes back to being a follower.

Leader:
The leader manages and coordinates the system.
If it finds out another server has a higher term; it steps down and becomes a follower again.

Example: RAFT in Supply Chain Blockchain

 Suppose a blockchain network has nodes: Manufacturer (Leader), Supplier, Distributor,
Retailer, and Auditor.

 The Supplier initiates a transaction (e.g., record delivery).

 The Leader (Manufacturer) validates and logs the transaction, then notifies followers.

 Majority of followers (Supplier, Distributor, Retailer) confirm, but Auditor node fails to
respond (oƯline or faulty).

 Since 4 out of 5 nodes acknowledge, consensus is reached and transaction is committed.

26. Explain state machine replication with suitable example.

 State Machine Replication is a technique used to ensure consistency in distributed systems.

 Multiple replicas (nodes) maintain the same state and execute the same operations in the
same order.

 Operations are deterministic — given the same input and initial state, all replicas produce the
same output and next state.

 It provides fault tolerance, meaning the system continues to function correctly even if some
nodes fail.

 A consensus mechanism is used to agree on the order of operations among all replicas.

 It ensures all nodes behave identically, maintaining reliability and synchronization across the
network.

Example of State Machine Replication: Crowdfunding

1) Multiple servers maintain copies of the state machine, each tracking donations and job
completion.

2) Initial state: The process begins with the "Initiate Job" state.
3) Inputs/transactions: Donations from users like Bob and Alice are transactions (inputs) that

all servers must process. The consensus protocol ensures these donations are processed in
the same order on every server.

4) State transitions: After donations, the state machine transitions to "Money Available." As
tasks are completed, the state changes to "Job 1 Complete" or "Job 2 Complete" and
eventually to "Job 1 & 2 Complete".

5) Final state: When all conditions are met, the state machine reaches the final state of
"Money Transferred," and the process is complete.

This example shows how all servers independently track the same sequence of events, ensuring
that even if some servers fail, the crowdfunding process remains consistent and correct across
the network.

27. Write a short note on PAXOS consensus algorithm.

Paxos is a consensus algorithm that ensures a group of distributed nodes agree on a single
value, even if some nodes fail or the network partitions. It is widely used in databases and
distributed systems where durability and consistency are required.

Roles in Paxos:

o Proposers – Propose values to be agreed upon.

o Acceptors – Vote on proposals; a majority vote ensures consensus.

o Learners – Learn and announce the final agreed value.

Working Principle:

 Proposers generate and send proposals (containing candidate values, like "who should be
leader?") to all Acceptors.

 Acceptors receive proposals and vote. Each Acceptor can promise to only accept newer
proposals with higher ballot numbers, ensuring safety (no conflicting decisions).

 Consensus is achieved when a majority of Acceptors vote to accept the same proposal,
forming an agreement.

 Learners collect the results from Acceptors. Once consensus is reached, the agreed value
is learned and announced to all nodes in the system.

Example

Imagine four servers (A, B, C, D) need to agree on a leader.

 A proposes “Leader = X” with proposal #1.

 B and C accept while D rejects.

 Majority (3 out of 4) agrees → consensus achieved → Leader = X.

Even if one node fails, the system continues to operate correctly.

6. Tools and Applications of Blockchain

28. Write a short note on Ripple.

 Ripple is a real-time gross settlement system (RTGS), currency exchange, and remittance
network built on a decentralized blockchain-like ledger.

 Its native cryptocurrency is XRP, which acts as a bridge currency to facilitate fast cross-border
transactions.

 Ripple enables instant, low-cost international payments, targeting banks and financial
institutions rather than individual users.

 Unlike Bitcoin or Ethereum, Ripple uses the Ripple Protocol Consensus Algorithm (RPCA)
instead of Proof of Work, making it faster and energy-eƯicient.

 Provides a secure and flexible payment infrastructure, including features like multi-currency
transfers and trust-based accounts.

Example:

Ripple Payment System

Ripple enables real-time cross-border payments between banks using distributed ledger
technology.

 Banks exchange payment details via Ripple’s secure messaging layer.

 Validator nodes confirm authenticity and prevent double spending.

 Settlement occurs instantly: funds are debited from Bank A and credited to Bank B.

Advantages:

 Very fast (3–5 seconds) settlement.

 Low transaction cost.

 Energy-eƯicient and highly scalable.

29. Write a short note on Corda.

Corda is an open-source, permissioned blockchain platform developed by R3 for businesses. It
focuses on secure, private transactions for industries like finance, supply chain, and healthcare.

Corda Architecture & Components:

 Nodes & Vaults – Each participant runs a node with a vault storing ledger states.

 States – Immutable facts on the ledger that evolve by consuming old and creating new ones.

 Contracts – Define rules for updating states, written in JVM languages.

 Flows – Govern communication and transaction coordination between nodes.

 Consensus – Ensures validity (rules check) and uniqueness (no double-spending).

 Notary Service – Trusted nodes ensuring uniqueness while maintaining privacy.

Working of Corda (Transaction Lifecycle)

1. Transaction Proposal

 Party A wants to transfer an asset
(e.g., a bond) to Party B.

 A new transaction object is created
with input state (old ownership) and
output state (new ownership).

2. Verification

 The contract code verifies rules
(e.g., “Only current owner can
transfer asset”).

3. Signing

 All required parties digitally sign the
transaction.

4. Notarization

 Transaction sent to Notary node →
checks uniqueness (ensures no
double-spend).

5. Recording

 Once notarized, both Party A and Party B record the transaction in their Vaults.

 Only involved parties see it, unlike public blockchains.

30. Write a short note on DeFi (Previously asked as three separate questions: Role of Smart
Contracts in DeFi, DeFi Architecture, and Blockchain for DeFi in diƯerent papers)

DeFi (Decentralized Finance) is a financial system built on blockchain networks that allows
users to access financial services like lending, borrowing, trading, and payments without
traditional intermediaries such as banks.

DeFi Architecture:

1. Settlement Layer:

o The base blockchain (Ethereum) that records all transactions.

o Provides the secure and immutable ledger for all assets and operations.

2. Asset Layer:

o Represents the digital assets used in DeFi, such as:

 Native assets: ETH (Ethereum’s native cryptocurrency).

 Fungible tokens such as ERC-20 tokens.

 Non-fungible tokens: ERC-721 tokens (unique digital assets like NFTs).

3. Protocol Layer:

o Smart contract protocols that define financial services such as Exchanges, Loans,
Derivatives, Asset Management, etc.

4. Application Layer:

o User-facing DApps (Decentralized Applications) that interact with the protocols.

o Provides interfaces for trading, lending, borrowing, etc.

5. Aggregation Layer:

o Combines multiple DeFi services to oƯer better rates and convenience to users.

o Acts as a bridge connecting diƯerent applications and protocols.

Role of Smart Contracts in DeFi:

 Smart contracts are self-executing programs on the blockchain that automatically perform
financial actions when predefined conditions are met.

 They remove the need for intermediaries like banks or brokers.

 Enable trustless, transparent, and secure transactions among users.

 Used in DeFi for lending, borrowing, trading, staking, and insurance.

Example: In a lending protocol like Aave, a smart contract automatically transfers interest to the
lender once repayment occurs.

Use of DeFi in Blockchain:

 Enables peer-to-peer (P2P) financial services such as loans, exchanges, and savings.

 Supports decentralized exchanges (DEXs), stablecoins, and yield farming.

 Provides open, global access to financial systems without centralized control.

Example: Users can trade tokens directly on Ethereum through DeFi apps like Uniswap.

31. Write a short note on Quorum.

Quorum is an enterprise-focused version of Ethereum developed by J.P. Morgan, designed for
businesses that require permissioned blockchain networks with enhanced privacy and
performance.

Quorum Architecture:

 Quorum Node (Ethereum Client):
Modified Geth client that manages blockchain operations like block validation and
consensus.

 Constellation Node:
The privacy component of Quorum.

o Transaction Manager: Handles encrypted private transaction payloads.

o Enclave: Performs encryption, decryption, and signing operations to secure private data.

 Quorum Peer:
Combination of the Quorum Node and Constellation Node; enables both public and private
transaction handling securely.

Key Features of Quorum

1. Privacy and Confidentiality
Quorum supports both public and private transactions using smart contracts, ensuring
confidentiality through the Private Transaction Manager (Tessera/Constellation).

2. Enhanced Performance
It replaces Ethereum’s Proof-of-Work with faster consensus algorithms like RAFT and IBFT,
improving speed and reliability of transactions.

3. Permissioned Network
Quorum is a permissioned blockchain, meaning only authorized participants can join and
validate transactions, ensuring better control and security.

4. Enterprise Integration
It is designed for business use, making it easy to integrate with enterprise systems and
financial applications that require transparency and privacy.

5. Smart Contract Support
Quorum supports Ethereum-compatible smart contracts, allowing businesses to
automate workflows and maintain interoperability with Ethereum tools.

Asked once:
indicates 5-mark question

1. Introduction to Blockchain

1. Explain the components of Blockchain.

A blockchain is a distributed ledger consisting of a chain of blocks, each containing data. Its
main components are:

1. Block:

o The basic unit of blockchain containing data, hash, and previous block hash.

o Ensures integrity as each block links to the previous one.

2. Hash:

o A unique identifier for a block, generated using a cryptographic hash function.

o Any change in block data changes its hash, ensuring tamper-resistance.

3. Mining:

o The process of validating and adding a new block to the blockchain.

o Miners solve complex cryptographic puzzles to ensure security and consensus.

4. Data:

o Can be transactions, contracts, or other records depending on the blockchain type.

o Stored securely and permanently in each block.

5. Nodes:

o Computers participating in the blockchain network.

o Each node maintains a copy of the blockchain.

6. Consensus Mechanism:

o Protocol to validate and agree on new blocks (e.g., Proof of Work, Proof of Stake).

o Ensures all nodes agree on the blockchain state.

7. Network:

o Peer-to-peer (P2P) network connecting nodes.

o Allows decentralized data sharing without a central authority.

8. Smart Contracts:

o Programs stored on blockchain that execute automatically when conditions are met.

2. Write a short note on Cryptography in Blockchain.

Cryptography is essential for securing blockchain data and maintaining trust in a decentralized
system. It ensures that transactions are safe, verifiable, and tamper-proof.

1. Hashing:

o Every block contains a cryptographic hash of its data and the previous block’s hash.

o Hash functions like SHA-256 create a unique fingerprint for each block.

o Any change in data alters the hash, preventing fraud or tampering.

2. Public-Key Cryptography:

o Users have a private key to sign transactions and a public key to verify them.

o Ensures that only the owner of funds can authorize a transaction.

3. Digital Signatures:

o Provide authentication and non-repudiation.

o Everyone can verify the transaction came from the claimed sender.

Role of Cryptography in Blockchain

Blockchain relies on cryptography to:

 Protect user identities and transaction details from unauthorized access.

 Ensure data integrity, meaning once recorded, information cannot be changed.

 Support authentication and verification of digital transactions using digital signatures.

3. With a suitable diagram, explain the structure of a block header with a list of
transactions.

Block Header

 Block 0 Block 1

 Version Number (4 bytes) – Indicates the Bitcoin protocol rules under which the block was

created. This helps the network understand how to interpret the block’s data structure.

 Previous Block Hash (32 bytes) – A cryptographic hash of the block before the current one.
This creates the chain structure by linking each block to its predecessor, ensuring
immutability.

 Merkle Root (32 bytes) – A single hash value representing all transactions in the block,
created using the Merkle tree structure. It allows the verification of transactions without
checking each one individually.

 Timestamp (4 bytes) – The approximate time the block was mined, stored in UNIX time
format. It helps in arranging blocks chronologically.

 DiƯiculty Target (4 bytes) – Represents the target threshold that the block’s hash must meet
for it to be accepted. It ensures mining diƯiculty adjusts according to network conditions.

 Nonce (4 bytes) – A number miners change repeatedly during Proof of Work to find a valid
block hash that satisfies the diƯiculty target.

 Transactions - The body of the block contains a list of all transactions included in that block.
Each transaction records the transfer of value or data on the blockchain and is verified by
network nodes before being added.

2. Cryptocurrency

4. Write a short note on Mining pool and its methods.

Mining Pool

 A cryptocurrency mining pool is a group of miners who share their computational
resources.

 By combining their resources, miners increase the probability of finding a block or
successfully mining cryptocurrency.

 If the pool is successful and earns a reward, it is distributed among members according to
their contribution.

Methods of Mining Pools:

1. Pay-Per-Share (PPS):

o Each miner is paid a fixed amount for every share they contribute to the pool.

o Payment is guaranteed, even if the pool does not find a block.

o Reduces reward variability for miners, making income more predictable.

o Pool operator takes a fee for managing the pool.

2. Proportional Method:

o Rewards are distributed according to the number of shares contributed in the round
when a block is found.

o Payment is only made if the pool finds a block.

o Encourages miners to contribute more shares in each round to increase potential
rewards.

o High variance in income compared to PPS.

3. Pay-Per-Last-N-Shares (PPLNS):

o Rewards are calculated based on shares submitted in the last N rounds.

o Encourages miners to stay longer in the pool, reducing pool hopping.

o Helps evenly distribute rewards over time among active miners.

o Reduces the risk for the pool operator compared to PPS.

5. What is transaction structure? Explain transaction life cycle in detail.

Transaction Structure

A transaction is a data structure that represents the transfer of value between participants in a
blockchain network.
Each transaction typically contains the following fields:

1. Transaction ID: A unique hash generated for each transaction.

2. Input: Refers to the source of the funds being spent (previous transaction outputs).

3. Output: Specifies the destination address and amount to be sent.

4. Amount: Value of cryptocurrency being transferred.

5. Digital Signature: Verifies the authenticity of the sender.

6. Timestamp: Records the time when the transaction was created.

Transaction Life Cycle

1. Creation:
A user creates a transaction specifying sender, receiver, and amount.

2. Signing:
The sender digitally signs the transaction using their private key to ensure authenticity.

3. Broadcasting:
The signed transaction is sent to nearby network nodes through the peer-to-peer network.

4. Validation:
Nodes verify that the sender has suƯicient balance and the digital signature is valid.

5. Propagation:
The validated transaction is shared across the network and stored temporarily in the
mempool.

6. Mining (Inclusion in Block):
Miners pick valid transactions from the mempool and include them in a new block.

7. Confirmation:
Once the block is added to the blockchain, the transaction is considered confirmed and
irreversible.

6. Write a short note on Consensus in Bitcoin.

Consensus in Bitcoin

 Consensus in Bitcoin ensures that all nodes in the decentralized network agree on a
single, consistent version of the blockchain.

 It prevents double spending, fraud, and conflicting transactions, maintaining trust without
a central authority.

How Bitcoin Achieves Consensus:

1. Proof of Work (PoW):

o Miners compete to solve a cryptographic puzzle to add a new block.

o The first miner to solve it adds the block and receives a block reward.

o PoW requires significant computational eƯort, which secures the network against
attacks.

2. Longest Chain Rule:

o Nodes consider the longest valid chain as the correct blockchain.

o If multiple blocks are mined simultaneously, eventually the chain with the most
cumulative work becomes accepted.

3. Decentralized Verification:

o Each node independently verifies transactions in a block before accepting it.

o Ensures that all participants agree on transaction validity and maintain the blockchain’s
integrity.

Importance:

 Maintains a trustless and decentralized network.

 Ensures blockchain integrity and prevents tampering.

 Enables secure, peer-to-peer transactions without a central authority.

3. Programming for Blockchain

7. Explain the role of address and address payable in solidity with example.

1. address

 Represents a 20-byte Ethereum account (externally owned account or contract).

 Can store an account address and check balances using balance.

 Cannot receive Ether directly using transfer() or send().

 Useful for reading account information but not sending Ether.

2. address payable

 A special type of address that can receive Ether.

 Has functions like transfer(), send(), and call{value: ...}() to send Ether.

 Use when you want a contract or account to accept payments.

Example:

contract AddressExample {

 address public normalAddress;

 address payable public payableAddress;

 // Send Ether to payable address

 function sendEther() public payable {

 payableAddress.transfer(msg.value);

 }

 // Get balance of normal address

 function getBalance() public view returns (uint) {

 return normalAddress.balance;

 }

}

Explanation:

 normalAddress → just stores an address; cannot receive Ether.

 payableAddress → can receive Ether using transfer().

 getBalance() shows how you can read balances of any address.

8. Write a program in solidity to implement single inheritance.

// Base contract

contract RectangleDimensions {

 uint internal a = 10;

 uint internal b = 20;

 function settingDimensions() external view returns (uint, uint) {

 return (a, b);

 }

}

// Derived contract

contract Area is RectangleDimensions {

 function calculateArea() public view returns (uint) {

 return a * b;

 }

}

This code shows single inheritance in Solidity. The Area contract inherits variables and the
function from RectangleDimensions, allowing it to directly access a and b to calculate area.

9. Describe how solidity supports multiple inheritance with an example. #

Multiple inheritance:

 Solidity allows a contract to inherit from multiple parent contracts.

 Solidity resolves the inheritance order automatically using C3 linearization.

 Variables and functions from all parent contracts are accessible in the derived contract.

Example:

contract A { uint x = 10; }

contract B { uint y = 20; }

contract C is A, B {

 function sum() public view returns (uint) {

 return x + y;

 }

}

Explanation of example:

C inherits from both A and B.

sum() can access variables x and y from both parents.

10. Write a program in solidity to find the second largest element in an array. #

contract SecondLargest {

 function findSecondLargest(uint[] memory arr) public pure returns (uint) {

 require(arr.length >= 2, "Array must have at least 2 elements");

 uint largest = arr[0];

 uint second = arr[0];

 for (uint i = 1; i < arr.length; i++) {

 if (arr[i] > largest) {

 second = largest;

 largest = arr[i];

 } else if (arr[i] > second && arr[i] != largest) {

 second = arr[i];

 }

 }

 return second;

 }

}

4. Public Blockchain

11. List and explain various types of nodes used in Ethereum. #

Types of Ethereum Nodes:

1. Full Node:

o Stores the entire blockchain and validates all transactions and blocks.

o Ensures the node follows consensus rules and can serve other nodes.

2. Light Node (Light Client):

o Stores only block headers instead of the full blockchain.

o Relies on full nodes for transaction and block verification.

o Saves storage and bandwidth, suitable for mobile or low-resource devices.

3. Archive Node:

o Stores everything a full node does plus all historical states of the blockchain.

o Useful for data analysis or querying past states, but requires large storage.

5. Private Blockchain

12. What is a backup in Practical Byzantine Fault Tolerance (PBFT) algorithm?

The Practical Byzantine Fault Tolerance (PBFT) algorithm is a consensus mechanism used in
distributed systems and blockchains to achieve agreement even when some nodes are
malicious or faulty.

PBFT uses a replica-based architecture with two main roles:

1. Primary (Leader) – Coordinates the ordering of requests.

2. Backups (Replicas) – Verify and agree on the leader’s proposal.

In the Practical Byzantine Fault Tolerance (PBFT) algorithm, a backup is any replica (node) in the
network that is not the primary (leader) node.

Role of Backups in PBFT:

Backups are responsible for:

1. Receiving requests broadcast by the primary node.

2. Verifying correctness of the request/order proposed.

3. Participating in the three consensus phases-

o Pre-prepare: Receive message from primary.

o Prepare: Broadcast confirmation to other replicas.

o Commit: Final confirmation that all replicas agree.

4. Executing the client request after consensus.

Example

If there are 4 replicas (R0, R1, R2, R3):

 R0 = Primary

 R1, R2, R3 = Backups

If the primary proposes an incorrect transaction, backups detect the inconsistency and trigger a
view change to elect a new primary.

Thus, system integrity is maintained even if one node acts maliciously.

13. Compare the role of MSP and Fabric CA. Explain their role in Hyperledger blockchain.

Parameter MSP (Membership Service Provider) Fabric CA (Certificate Authority)

Purpose Defines and manages identities and roles
of network participants

Issues digital certificates to
authenticate identities

Function Manages user identities and verifies
signatures

Creates and provides certificates
for users and nodes

Scope Works within the network to control
access

Manages certificates for each
organization

Integration Used by the network to validate
transactions

Provides certificates that MSP
uses

Centralization Distributed across organizations Central service per organization

Updates Can add/remove members dynamically Can issue, renew, or revoke
certificates

Role in Hyperledger Blockchain

1. MSP (Membership Service Provider)

 Ensures only authorized participants can join the network.

 Defines roles (peer, orderer, client) and access rights.

 Provides a decentralized trust mechanism without relying on a single authority.

 Helps in managing identity across multiple organizations in a blockchain consortium.

2. Fabric CA

 Acts as the certificate authority for the network.

 Issues and manages digital certificates (X.509) for users, peers, and orderers.

 Handles enrolment, renewal, and revocation of certificates.

 Works with MSP to provide cryptographic credentials needed for authentication.

14. Compare BFT and PBFT consensus in detail.

Parameter BFT
(Byzantine Fault Tolerance)

PBFT
(Practical Byzantine Fault Tolerance)

Definition Theoretical model to tolerate
Byzantine faults in distributed
systems

Concrete algorithm implementing BFT in
real-world systems

Purpose General concept to handle
faulty/malicious nodes

Makes BFT practical and eƯicient in
asynchronous systems

Implementation No specific implementation –
serves as a foundation

Specific algorithm designed by Castro
and Liskov (1999)

Consensus
Process

Varies depending on the system 3-phase process: Pre-Prepare → Prepare
→ Commit

Communication
Complexity

Depends on protocol; may be
optimized

High – O(n²) messages per consensus
round

Performance Can be ineƯicient in practice More eƯicient, especially in small
networks

Leader Election May or may not involve a leader Uses a designated primary (leader) node

Scalability Poor without optimization Limited due to high message overhead

Examples Tendermint Hyperledger Fabric v0.6

15. How is a smart contract represented as a state machine. #

A smart contract on a blockchain can be represented as a state machine because it maintains a
current state (e.g., token balances or ownership) and changes it when a transaction occurs.

 Each transaction acts as an input that triggers a state transition.
 The contract then updates to a new state in a fixed, predictable way.
 Since all nodes run the same code on the same input, they reach the same result, keeping

the blockchain consistent.
 Thus, a smart contract behaves like a finite state machine, where transitions are controlled

by transaction logic and consensus ensures identical updates on all nodes.

	Question bank
	1. Introduction to Blockchain
	2. Cryptocurrency
	3. Programming for Blockchain
	4. Public Blockchain
	5. Private Blockchain
	6. Tools and Applications of Blockchain
	Asked once: 1. Introduction to Blockchain
	2. Cryptocurrency
	3. Programming for Blockchain
	4. Public Blockchain
	5. Private Blockchain

