
Times asked 7 times
6 times
5 times
4 times
3 times
2 times

1 time

TCS Theory Question bank
1.Basic concepts and Finite Automata

1. Explain applications of Finite Automata(FA).
2. Discuss diƯerence in transition function of FA, PDA and TM.
3. DiƯerentiate between FA, PDA and TM.
4. Compare and contrast Moore and Mealy machines.
5. DiƯerentiate between DFA and NFA.
6. Short note on Moore and Mealy machine.
7. Explain Finite State Machine(FSM).

2. Regular Expressions and Languages
1. Explain and give formal definition of pumping lemma for regular language.
2. Short note on Decision properties of Regular language.
3. Explain applications of Regular Expressions.
4. Define Regular language.
5. Short note on Arden’s theorem.
6. What are the closure properties of RL.

3. Grammars

1. Write a short note on Chomsky Hierarchy with an example.
2. Steps for converting CFG to CNF.

4. Pushdown Automata (PDA)
1. Explain the ways of acceptance by a PDA.
2. DiƯerentiate between PDA and NPDA.
3. Explain applications for PDA.
4. Write a short note on: Definition and working of PDA.
5. Explain non-deterministic PDA.

5. Turing machine (TM)

1. Write a short note on: Variants of Turing machines.
2. Explain applications for TM.
3. Write a short note on: Universal Turing machine.

6. Undecidability
1. Write a short note on: Post Correspondence problem.
2. Write a short note on: TM Halting problem.
3. Write a short note on: Recursive and Recursively enumerable languages.
4. Write a short note on: Rice’s theorem.

TCS Theory Answer bank
1.Basic concepts and Finite Automata

1. Explain applications of Finite Automata(FA).

v. Text Search and Pattern Matching

vi. Spell Checkers
vii. Regular Expression Matching

viii. Natural Language Processing (NLP)
2. Discuss diƯerence in transition function of FA, PDA and TM.

3. DiƯerentiate between FA, PDA and TM.

4. Compare and contrast Moore and Mealy machines.

5. DiƯerentiate between DFA and NFA.

6. Short note on Moore and Mealy machine.

Moore Machine:

 In a Moore machine, the output depends only on the current state of the machine.

 Each state in a Moore machine has a fixed output, so the output only changes when the
machine transitions to a diƯerent state.

 Example: TraƯic light controller, where each light state (green, yellow, red) has a fixed
output.

Mealy Machine:

 In a Mealy machine, the output depends on the current state and the current input.

 This allows Mealy machines to potentially produce diƯerent outputs even while in the
same state, based on varying inputs.

 Example: Serial data transmission, where the output changes immediately in response to
diƯerent inputs.

Steps for Converting a Moore Machine to a Mealy Machine

1. Identify States and Outputs:

o List the states and the fixed outputs for each state in the Moore machine.

2. Associate Outputs with Transitions:

o For each state and its outgoing transitions, create corresponding Mealy transitions.

o The output for each Mealy transition will be the same as the output of the Moore
state it’s coming from.

3. Adjust Output for Each Input Condition:

o If a state in the Moore machine has diƯerent outputs based on input conditions,
modify each Mealy transition to have the appropriate output for each input.

4. Remove Extra States (if applicable):

o Since Mealy machines can have fewer states due to their output flexibility, combine
states if possible to reduce the machine's size.

5. Verify:

o Ensure that the Mealy machine behaves identically to the Moore machine.

7. Explain Finite State Machine(FSM).
A Finite State Machine (FSM) is a computational model used to design and describe the
behaviour of systems that have a finite number of states. FSMs are widely used in computer
science, digital circuit design, and various fields where systems have predictable, stepwise
behaviours.

Types of Finite State Machines

1. Deterministic Finite Automaton (DFA):
o In a DFA, each state has a unique transition for each possible input.
o This means that from any given state, an input can lead to only one specific next

state.
2. Non-Deterministic Finite Automaton (NFA):

o In an NFA, a state can have multiple transitions for the same input, leading to
diƯerent possible next states.

o NFAs are more flexible but can be more complex to analyze.
3. Moore Machine:

o A type of FSM where the output depends only on the current state, not the input.
o The output changes only when the state changes.

4. Mealy Machine:
o A type of FSM where the output depends on both the current state and the current

input.
o This allows the output to respond more immediately to input changes.

2. Regular Expressions and Languages
1. Explain and give formal definition of pumping lemma for regular language.

The Pumping Lemma is a fundamental property of regular languages, used to prove that certain
languages are not regular. If a language is regular, it must satisfy the pumping lemma. If we can
show that a language does not satisfy the pumping lemma, we can conclude that it is not
regular.

2. Short note on Decision properties of Regular language.

Decision properties of regular languages are properties that allow us to determine certain
characteristics or make decisions about regular languages using algorithmic methods. These
properties make regular languages particularly useful, as they enable us to analyse and
manipulate languages in eƯicient ways.

3. Explain applications of Regular Expressions.
1. Lexical Analysis in Compiler Design

 Lexical analysis is the first phase of a compiler, where source code is broken down into
tokens, Regular expressions play a critical role in defining the patterns for tokens.

2. grep in UNIX
 The grep command in UNIX is a powerful tool that uses regular expressions to search text

in files or streams. Here are some common applications of grep:
3. Input Validation:

 Regular expressions are commonly used to validate user input in forms and applications
to ensure it meets certain criteria.

4. Data Extraction:

 Regex can extract specific information from text by identifying patterns.

5. Search and Replace Operations:

 Regular expressions make search-and-replace operations more flexible, allowing bulk
modifications based on patterns rather than exact matches.

4. Define Regular language.

A Regular Language is a type of formal language that can be recognized by a finite automaton
and can be defined using regular expressions. In simpler terms, it is a language whose strings
can be generated by applying a specific set of rules, such as concatenation, union, and
repetition (also known as the Kleene star).

Examples of Regular Languages

 The set of all strings over the alphabet {0,1} that contain an even number of 0s.

 The set of all strings over {a,b} that start with a and end with b.

5. Short note on Arden’s theorem.

Arden's Theorem is a fundamental theorem in the theory of regular languages and automata,
used to solve regular expressions for certain types of equations. It provides a method to express
the language accepted by a finite automaton in terms of regular expressions, which is useful in
designing and analyzing automata.

Statement of Arden's Theorem

For any two regular expressions P and Q over an alphabet Σ if R is a solution to the equation:

R=Q+RP

then the solution can be expressed as:

R=QP∗

where:

 + represents the union of languages,

 ⋅ represents concatenation,

 P∗ is the Kleene star of P, meaning zero or more occurrences of P.

6. What are the closure properties of RL.

3. Grammars

1. Write a short note on Chomsky Hierarchy with an example.

2. Steps for converting CFG to CNF.

4. Pushdown Automata (PDA)
1. Explain the ways of acceptance by a PDA.

2. DiƯerentiate between PDA and NPDA.

3. Explain applications for PDA.
1) Syntax Parsing in Compilers: PDAs are used to parse context-free grammars, which helps in

analyzing the syntax of programming languages to check if code is written correctly.
2) Language Recognition: PDAs can recognize context-free languages, like checking if

parentheses are balanced in an expression (e.g., in mathematical equations or code blocks).
3) Natural Language Processing (NLP): PDAs help model simple structures in human

languages, such as basic sentence structures and nested phrases, which aids in
understanding and processing human languages.

4) XML Parsing: XML documents have a nested structure that can be validated using PDAs,
ensuring the correct opening and closing of tags.

5) Arithmetic Expression Evaluation: PDAs can be used to evaluate arithmetic expressions by
parsing and evaluating expressions with nested structures, such as ((2+3)*4).

6) Design of Interactive Systems: PDAs model systems with nested or recursive states, like
navigation systems with menus and submenus.

4. Write a short note on: Definition and working of PDA.

5. Explain non-deterministic PDA.

A Non-deterministic Pushdown Automaton (NPDA) is a type of automaton that processes
input strings using both a stack and non-deterministic transitions. Non-determinism allows the
NPDA to make multiple possible moves at each step based on the current input symbol, stack
top, and current state. This capability makes NPDAs more powerful than deterministic PDAs
(DPDAs) because they can recognize a broader class of languages, specifically all context-free
languages (CFLs).

6. Turing machine (TM)
1. Write a short note on: Variants of Turing machines.

Two-Way Infinite Turing Machine: A Turing Machine with an infinite tape extending in both
directions, allowing the head to move left or right indefinitely.

Multitape Turing Machine: Has multiple tapes, each with its own independent tape head,
enabling more complex operations by accessing diƯerent tapes simultaneously.

Multitrack Turing Machine: Uses a single tape divided into multiple tracks, allowing it to read or
write multiple symbols at the same position on each track.

Multihead Turing Machine: Has multiple heads on a single tape, each head can read or write
independently, allowing it to access diƯerent parts of the tape simultaneously.

Nondeterministic Turing Machine: Can make multiple possible moves from a given
configuration, branching into multiple computation paths to explore all possibilities
simultaneously.

2. Explain applications for TM.

1) Understanding Computability: TMs help define what problems can be solved by any
machine, setting the basis for identifying computable vs. non-computable problems.

2) Algorithm Design: TMs oƯer a basic model for designing and analyzing algorithms,
helping to break down complex computations into simple steps.

3) Complexity Theory: TMs are used to classify problems based on their time and space
requirements, helping identify easy vs. hard problems in terms of resources.

4) Universal Computation Model: The Universal Turing Machine concept shows that one
machine can simulate any other, which is foundational for general-purpose computing.

5) Formal Language Processing: TMs serve as a model for processing languages, aiding in
understanding and developing parsers and compilers for programming languages.

3. Write a short note on: Universal Turing machine.
 Universal Turning Machine stimulates a Turning Machine.
 Universal Turing Machine can be considered as a subset of all the Turing machines, it can

match or surpass other Turing machines including itself.
 Programmable Turing Machine is called Universal Turing Machine
 Universal Turing Machine is like a single Turing Machine that has a solution to all problems

that is computable.
 It minimizes space complexity
 It contains a Turning Machine description as input along with an input string, runs the

Turning Machine on the input and returns a result.
 The transition function is Q × T → Q × T × {L, R}, where Q is a finite set of states, T is the tape

of the alphabet

6. Undecidability
1. Write a short note on: Post Correspondence problem.

2. Write a short note on: TM Halting problem.

3. Write a short note on: Rice’s theorem.
Rice's Theorem is an important result in the theory of computation, which states that any non-
trivial property of the language recognized by a Turing Machine is undecidable.

Key Points of Rice’s Theorem
1. Non-trivial Property: A property is considered non-trivial if it is true for some Turing

Machines and false for others. In other words, the property does not apply universally to all
TMs or none at all.

2. Undecidability: Rice’s Theorem shows that it is impossible to design an algorithm (or
Turing Machine) that can determine any non-trivial property of the language a Turing
Machine recognizes. This means that for properties like "the language recognized by a TM
is empty," "the language is finite," or "the language includes a specific string," no algorithm
can decide them for all possible Turing Machines.

3. Scope of the Theorem: Rice's Theorem applies to properties of the language recognized
by a Turing Machine, not properties of the machine itself (like the number of states or
transitions).

Examples of Properties Covered by Rice’s Theorem
 Whether a Turing Machine accepts all strings.
 Whether a Turing Machine’s language is regular or context-free.
4. Write a short note on: Recursive and Recursively enumerable languages.

Recursive Languages

 Definition: A language is recursive (or decidable) if there exists a Turing Machine that can
always determine, in a finite amount of time, whether any given string belongs to the
language (accepts) or does not belong (rejects).

 Properties:

o For a recursive language, the Turing Machine will always halt with a definitive answer
(accept or reject) for any input.

o Recursive languages are the class of languages that can be fully "decided" by a
Turing Machine.

 Example: The set of all even numbers in binary form is recursive since there is a clear
algorithm (ending in zero) to determine if a binary number is even.

Recursively Enumerable (RE) Languages

 Definition: A language is recursively enumerable (RE) if there exists a Turing Machine
that will accept any string in the language but may either reject or run indefinitely for
strings not in the language.

 Properties:

o For an RE language, the Turing Machine is guaranteed to halt if the string is in the
language (accept), but it may never halt if the string is not in the language.

o RE languages are also known as semi-decidable because the Turing Machine may
not provide a definitive answer (halt) for strings not in the language.

 Example: The halting problem (determining if a given Turing Machine halts on a given
input) is RE because, if the machine halts, there’s a way to verify it, but if it doesn’t halt,
there’s no guaranteed way to detect non-halting.

