Times asked: m

4 times
3 times
2 times

1time
indicates 5-mark question
Papers considered 2019 May & Dec. 2022 Dec 2023 May & Dec

Modules 4,5,6 were not the same in 2019 so questions asked 3 times in those 3
modules mean they have been asked in all the papers.

ADBMS Question bank

Module 1: Distributed DBMS
1. Explain Distributed DBMS Architecture in detail
2. Explain Data Fragmentation in Distributed Databases
3. Explain Allocation and Replication Techniques for Distributed Database Design
4. Write a short note on: Failures in Distributed Database

Module 2: Query Processing and Optimization

CME xplain phases in Distributed Query Processing with neat diagram.
6. Draw the neat diagram of Query Processing
7. Explain 2PC in detail with neat diagram
8. Explain 3PC in detail with neat diagram
9. Explain ACID properties
10. Write a short note on: Query Evaluation Plan
11. Write a short note on: Query Processing Issues in Heterogeneous Database
12. Differentiate between 2PC and 3PC Protocol
Module 3: JSON, XML and Semi-Structured Data
13. Explain basic JSON syntax with data types
14. What is XML? Explain XML Schema Document with example.

15. Create a XML document. PYQ:
XML document of ‘Restaurant Menu Card’ has food items categorized into Starters, Drinks,
Chinese, South and Punjabi. Each food item element contains name, cost, calories, and
veg/non-veg flag. Write XML Schema for the above XML document.

16. Differentiate between XML and JSON

Module 4: NoSQL
17. Explain CAP theorem in NoSQL Database
18. Differentiate between SQL and NoSQL
19. Write a short note on: NoSQL Data Modelling
20. Explain Replication and Sharding in NoSQL
21. Explain Benefits of NoSQL

Module 5: NoSQL using MongoDB
22. Explain MongoDB Sharding
23. Explain MongoDB CRUD Operation
24. Explain basic data types in MongoDB

Module 6: Trends in advance databases

25. What is a Graph Database? What are the features of Graph Database?

26. Explain Spatial Database in detail

27. Explain Temporal Database in detail

1 2 3 4 5 6
2023 Dec 20 25 20 30 15 15
2023 May 0 35 20 25 20 25
2022 Dec 20 30 30 30 25 5
Last 3 Avg 20 30 20 25 20 15

ADBMS Answer bank
Module 1: Distributed DBMS

1. Explain Distributed DBMS Architecture in detail

DDBMS architectures are generally developed depending on three parameters
Distribution - It states the physical distribution of data across the different sites.

Autonomy - It indicates the distribution of control of the database system and the degree to
which each constituent DBMS can operate independently.

Heterogeneity — It refers to the uniformity or dissimilarity of the data models, system
components and databases.

Common architectural models are:-

Client-server architecture: In this architecture, clients connect to a central server, which
manages the distributed database system. The server is responsible for coordinating
transactions, managing data storage, and providing access control.

Types:
e Single Server Multiple Client
e Multiple Server Multiple Client

Client 1 Client N
Application Programs Application Programs
Client Services Client Services
communications communications
Manager Manager

Communication

Link Communications Communications
Manager Manager
Database - Database
Services Services
Server 1 Server M

e)
=

Peer-to-peer architecture: In this architecture, each site manages its own data and coordinates
transactions with others. Every peer acts as both client and server, sharing resources and
coordinating activities across the system.

This architecture generally has four levels of schemas -

e Global Conceptual Schema - Depicts the global logical view of data.

e Local Conceptual Schema - Depicts logical data organization at each site.
¢ LocalInternal Schema - Depicts physical data organization at each site.

e External Schema - Depicts user view of data.

External External External
Schema 1 Schema 2 - e o o a2l Sasma N

Global Conceptual Schema

Local Local Local
Conceptual Conceptual by T =, e g) (e | CONCRNRIEN
Schema 1 Schema 2 Schema N

Local Local Local
Internal Internal Internal
Schema 1 Schema 2 Schema N

Multi-Database System Architecture:-

A Multi-Database System (MDBS) is a type of Distributed DBMS where each local database
system is autonomous and independently managed, but they are integrated using a middleware
or global schema for unified access.

2. Explain Data Fragmentation in Distributed Databases.

In fragmentation, the relations are broken (i.e., separated into smaller portions) in this manner,
and each of the fragments is kept in multiple locations as needed. It must be ensured that the
fragments can be utilized to recreate the original relationship (i.e., that no data is lost).

Fragmentation is useful since it avoids the creation of duplicate data, and consistency is not an
issue.

Horizontal fragmentation — Splitting by rows — Each tuple is allocated to at least one fragment
once the relation is broken into groups of tuples.

Vertical fragmentation — Splitting by columns — The relation’s schema is broken into smaller
schemas. To achieve a lossless join, each fragment must have a shared candidate key.

3. Explain Replication and Allocation Techniques for Distributed Database Design

Replication Techniques of distributed database:

1)Full Replication:

e Entire database copies are stored on multiple nodes.
e High availability and fault tolerance.
e |ncreased storage requirements, synchronization overhead.

2)Partial Replication:

e Only selected portions of the database are replicated.
e Reduces storage overhead, allows for tailored replication.
e Complexity in managing consistency across replicas.

3)Multilevel Replication:

e Different levels of replication based on importance or access frequency.
e Balances performance and resource utilization.
e Requires careful planning to determine replication levels.

Allocation Techniques of distributed database

1)Centralized Allocation:

e A central server manages data distribution to nodes.
e Simplifies administration, centralized control.
e Single point of failure, potential performance bottleneck.

2)Decentralized Allocation:

e Nodes autonomously manage their data allocation.
e |Improved scalability, reduced dependency on a central server.
e Coordination challenges, potential for uneven data distribution.

3)Hash-Based Allocation:

e Datais distributed using a hash function on a key attribute.
e Uniform data distribution, efficient for range queries.
e Limited adaptability to changing access patterns.

4)Round Robin Allocation: Data is assigned to nodes in a cyclical fashion.

5)Random Allocation: Data is placed on nodes randomly.

4. Write a short note on: Failures in Distributed Database

Types of Failures:
1. Transaction Failures

o Occur when a transaction cannot complete successfully due to logical or system
errors (e.g., deadlock, integrity constraint violation).

2. Site Failures

o Happen when an entire site (hode) goes down due to power failure, hardware crash,
or OS failure.

3. Communication Failures

o Arise when messages between sites are lost or delayed due to network issues,
leading to timeouts or inconsistent states.

4. Media Failures

o Involve loss or corruption of data stored on disk due to hardware malfunction or file
corruption.

Module 2: Query Processing and Optimization

CMExplain phases in Distributed Query Processing with neat diagram.

Calculus Query on Distributed
elations

Algebraic Gﬁler}' on Distributed

elations
CONTROL
SITE
Fragment Query
STATS ON
k FRAGMENTS
Optimized Fragment Query
with Communication Operations
LOCAL
SITES

Optimized Local
Queries

Distributed Query Processing means running a query on data that is stored at different
locations (sites) in a network. The goal is to get correct results quickly and efficiently by
coordinating across all those sites.

Main Phases:
1. Query Decomposition
o The system checks if the user query is correct.
« It breaks the query into smaller steps using a simple format (like relational algebra).
« Italso simplifies the query by removing unnecessary parts.
2. Data Localization
« Finds out where the required data is stored (which site or fragment).
« Changesthe query so it can collect the right data from the right places.
3. Global Optimization

« Creates different ways to run the query.

« Chooses the best one based on speed, cost, and how much data needs to move.
« Uses special tricks like semi-joins to reduce data transfer.
4. Local Optimization
« Improves performance at each site where the query runs.
« Usesthe local database’s own tools to make things faster.
5. Query Execution
« Runsthe final plan.

o Collectsresults from all sites and sends the final answer to the user.

Draw the neat diagram of Query Processing

Just draw the diagram from previous page, asked for 5 marks

6. Explain 2PC in detail with neat diagram

2PC is a distributed algorithm used in DBMS to ensure atomicity in a distributed transaction
across multiple databases or systems.

It ensures that either all participants commit the transaction or none do, even in case of
failures.

Coordinator l Participant i‘

< [Begi}— Prepare (vote request)

4 o

)

+ U L S—
i
S
g Decision— T
a
Q
o |
v Ack — |
B 1
(1] //

Phases of 2PC
Phase 1: Prepare Phase (Voting Phase)
« The coordinator sends a "Prepare to Commit?" request to all participants.
« Each participant does:
o Logs the transaction locally.
o Replies with “Yes (Vote-Commit)” if ready.
o Replies with “No (Vote-Abort)” if there's a problem (e.g., constraint violation).
Phase 2: Commit/Abort Phase
« Ifall participants voted Yes:
o Coordinator sends "Commit" message.
o All participants commit the transaction and log it.
« If any participant voted No:
o Coordinator sends "Abort" message.

o All participants abort and roll back the transaction.

7. Explain 3PC in detail with neat diagram

3PC is an improvement over the 2PC (Two-Phase Commit) protocol. It eliminates the blocking
problem by introducing a third phase and ensuring non-blocking behaviour in most cases.

Transaotion Participants
coordinator
- .g Re u l
" Juest-to-p réparg B
< u t\on\.
Prepare u P«ﬁ\ﬂnaﬂon!NeQa ¥
‘phase, |_ : :
B __ P
. '8parg to COmmu .
Pre-Commity M ; -
._Ph?G_Q: : i} AcK “ow\edgemen &
& W
[=* Commit or g :
Q"back
~C%mrhit ’ : ‘ -=
phase emen
- . l
i]

Phases of 3PC

3PC divides the commit process into three phases to reduce the chance of participants being
stuck in uncertainty.

Phase 1: Can Commit? (Voting Phase)
« Coordinator sends “CanCommit?” request to all participants.
o Each participant replies with:
o “Yes” (ready to commit), or
o “No” (cannot commit).
Phase 2: Pre-Commit Phase
« Ifall participants say “Yes”:
o Coordinator sends “PreCommit” message.
o Participants log the message and prepare to commit, but do not commit yet.
o Participants acknowledge receipt.
Phase 3: Do Commit (Commit Phase)
o Afterreceiving all acknowledgments:
o Coordinator sends “DoCommit”.

o Participants finally commit the transaction.

8. Explain ACID properties

1. Atomicity - All or Nothing
« Atransaction should either finish completely or not happen at all.
« Ifthere’s any error, all changes are cancelled.

« Example: When 1000 is transferred from Account A to B, both debit and credit must
happen. If one fails, both are cancelled.

2. Consistency - Stay Valid
« The database must remain correct before and after a transaction.
« Allrules and conditions (like no negative balance) must be followed.

« Example: If arule says balance can’t go below 0, the transaction must not break that.

3. Isolation - No Interference
« Transactions running at the same time should not affect each other.
« Eachtransaction acts like it’s the only one running.

« Example: Two people booking the same train seat won’t get the same seat.

4. Durability - Changes Stay Safe
« Once atransaction is done, its changes are saved permanently.
« Evenifthere’s a crash or power cut, the changes remain.

« Example: After paying online, the payment stays recorded even if the system shuts down.

9. Write a short note on: Query Evaluation Plan

A Query Evaluation Plan is a method the database uses to understand and run your query in the
best way.

When you ask the database a question (like using SQL), the system figures out different ways to
get the answer, then chooses the fastest and cheapest way.

o The queryis broken into small steps like filtering, joining, or sorting.
o There are many ways to do these steps.
« The system checks which way is faster or uses less memory.

« It picksthe best plan and runsiit.

10. Write a short note on: Query Processing Issues in Heterogeneous Database

. Different Query Languages:
Each database may use a different language (e.g., SQL, XQuery), so it's hard to write one
query that works for all.

. Different Data Models:
One database may use tables; another may use documents or key-value pairs. Combining
them in one query is tricky.

. Different Schemas:
The way data is organized may be different in each database, so joining data is complex.

. Data Location and Access Speed:
Data is stored in different places and some databases may be slower to respond, affecting
overall speed.

. Security and Access Control:
Each database might have its own rules for who can access what, making it hard to run
queries across all of them.

11. Differentiate between 2PC and 3PC Protocol

Point 2PC (Two-Phase Commit) 3PC (Three-Phase Commit)

1. Phases Has 2 phases: Prepare and Has 3 phases: Prepare, Pre-Commit,
Commit/Abort and Commit/Abort

2. Blocking Can block if coordinator Non-blocking due to extra pre-commit

Nature crashes phase

3. Coordinator
Failure

Participants may wait forever

Participants can decide if coordinator

fails

4. Message Fewer messages (less More messages (extra phase adds
Overhead overhead) overhead)
5. Simplicity Simpler and easier to More complex to implement

implement

6. Crash Handling

Poor recovery after crash

Better crash recovery and decision-

making

7. Example

Bank transfer waits if server
crashes

In 3PC, transaction can still continue

using timeout rules

Module 3: JSON, XML and Semi-Structured Data
12. Explain basic JSON syntax with data types

JSON (JavaScript Object Notation) is a lightweight data format used for storing and exchanging
data between systems, especially in web applications. Itis easy for humans to read and write
and for machines to parse and generate.

Basic JSON Syntax Rules:

1. Data is in key-value pairs
Example: "name": "John"

2. Data is separated by commas
Example: "name": "John", "age": 25

3. Curly braces {} hold objects

Example:
{
"name": "John",
"age": 25
}
4. Square brackets [] hold arrays
Example:
{
"fruits": ["apple", "banana", "mango"]
}
JSON Data Types:
Type Example Description
String "name": "Alice" Text value inside double quotes
Number "age": 30 Integer or float (no quotes)
Boolean "married": true true or false (lowercase, no quotes)
Object "address": {"city": "Delhi"} Nested data in key-value format
Array "colors": ["red", "blue"] Ordered list of values
Null "middleName": null Represents no value

13. What is XML? Explain XML Schema Document with example.

XML (eXtensible Markup Language) is a markup language used to store and transport data. It is
designed to be both human-readable and machine-readable. XML defines a set of rules for
encoding documents in a format that is both flexible and structured.

Features of XML:

e Self-descriptive (tags define the data)

e Supports nested data (hierarchical structure)

e Platform-independent and language-independent

e Used in data exchange between systems (e.g., APls, configurations)

XML Schema: An XML Schema (often written in XSD - XML Schema Definition) defines the
structure and data types of an XML document. It acts like a blueprint or validation rulebook that
checks:

e \What elements are allowed
e Order of elements
e Datatypes (string, integer, date, etc.)

XML Document:
<student>
<name>John Doe</name>
<age>20</age>
<email>john@example.com</email>
</student>
XML Schema (XSD):
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="student">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="age" type="xs:integer"/>
<xs:element name="email" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

14. Create a XML document. PYQ:
XML document of ‘Restaurant Menu Card’ has food items categorized into Starters, Drinks,
Chinese, South and Punjabi. Each food item element contains name, cost, calories, and
veg/non-veg flag. Write XML Schema for the above XML document.

XML Document (menu.xml)
<menu>
<starters>
<item>
<name>Paneer Tikka</name>
<cost>180</cost>
<calories>250</calories>
<veg>true</veg>
</item>
<item>
<name>Chicken Kebab</name>
<cost>220</cost>
<calories>300</calories>
<veg>false</veg>
</item>

</starters>

<drinks>
<item>
<name>Sweet Lime Soda</name>
<cost>50</cost>
<calories>120</calories>
<veg>true</veg>
</item>

</drinks>

<chinese>

<item>

<name>Veg Manchurian</name>
<cost>150</cost>
<calories>270</calories>
<veg>true</veg>

</item>

</chinese>

<south>
<item>
<name>Masala Dosa</name>
<cost>90</cost>
<calories>320</calories>
<veg>true</veg>
</item>

</south>

<punjabi>
<item>
<name>Butter Chicken</name>
<cost>240</cost>
<calories>500</calories>
<veg>false</veg>
</item>
</punjabi>

</menu>

XML Schema (menu.xsd)

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="menu">
<xs:complexType>
<xs:sequence>
<xs:element name="starters" type="CategoryType"/>
<xs:element name="drinks" type="CategoryType"/>
<xs:element name="chinese" type="CategoryType"/>
<xs:element name="south" type="CategoryType"/>
<xs:element name="punjabi" type="CategoryType"/>
</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="CategoryType">
<xs:sequence>
<xs:element name="item" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="cost" type="xs:decimal"/>
<xs:element name="calories" type="xs:integer"/>
<xs:element name="veg" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>

</xs:schema>

15. Differentiate between XML and JSON

Point XML JSON
1. Format Markup language Data format
2. Syntax Uses tags like <name>John</name> | Uses key-value pairs like

"name": "John"

3. Readability

More verbose and harder to read

Short, simple, and easy to read

4. Data Size

Larger due to opening and closing
tags

Smaller in size

5. Parsing Speed

Slower parsing

Faster parsing

6. Support for Data
Types

All values are strings by default

Supports strings, numbers,
Boolean, null etc.

7.Use in Web

Mostly used in legacy systems and
SOAP APls

Commonly used in modern
REST APIs

8. Example

<name>John</name>

"name": "John"

Module 4: NoSQL

16. Explain CAP theorem in NoSQL Database

The CAP Theorem, proposed by Eric Brewer, describes the three essential guarantees that a
distributed database system can provide:

1. Consistency (C)
All nodes in the system return the same data at the same time after an update.

2. Availability (A)
Every request receives a response, even if some nodes are down — no guarantee that it
contains the latest data.

3. Partition Tolerance (P)
The system continues to operate despite network failures that prevent communication
between nodes.

CAP Theorem Rule:

In any distributed system, it is impossible to simultaneously guarantee all three: Consistency,
Availability, and Partition Tolerance. A system can satisfy at most two of these three properties.

»m are.

Consistency

Partition
Tolerance

Availability

i. 4.2.2: Three main features Distributed system

Implications in NoSQL:

NoSQL databases sacrifice one property to achieve the other two, depending on the use case:

Database Type Properties Focused Example
CP (Consistency + Strong consistency even during partition MongoDB
Partition Tolerance) (default), HBase

AP (Availability + Partition | High availability with eventual consistency | CouchDB,
Tolerance) Cassandra

CA (Consistency + Not practicalin a distributed system as
Availability) partition tolerance is essential

17. Differentiate between SQL and NoSQL

Feature SQL (Relational DB) NoSQL (Non-relational DB)

Data Model Table-based with rows and Document, key-value, graph, or
columns column-based

Schema Fixed schema; predefined Dynamic schema; flexible structure
structure

Scalability Vertically scalable Horizontally scalable

Query Language | Uses SQL (Structured Query Uses various query methods (e.g.,
Language) JSON-like)

ACID Fully ACID compliant BASE model (eventual consistency)

Compliance

Best Suited For

Complex queries, transactional
systems

Big data, real-time web apps,
unstructured data

Example

MySQL, PostgreSQL

MongoDB, Cassandra

18. Write a short note on: NoSQL Data Modelling

NoSQL data modelling is the process of designing the structure of data for non-relational
databases, based on the application's access patterns. Unlike relational databases which follow
a normalized structure, NoSQL focuses on denormalization to improve performance and
scalability.

In NoSQL, the data model depends on the type of database (document, key-value, column-
family, or graph). It is typically designed around how the data will be read or queried, rather than
how it is stored. For instance, in a document store like MongoDB, related data is often
embedded within the same document to reduce the need for joins.

Key aspects of NoSQL data modelling include:
« Design for queries, not for storage.
« Embed orreference data depending on consistency and performance needs.
« Balance between duplication and normalization.

« Consider partitioning and sharding from the start.

19. Explain Replication and Sharding in NoSQL
Replication:

Replication involves copying data across multiple servers (nodes). One node acts as the
primary (or master), and others are secondary (or replicas). The primary handles write
operations, while secondaries replicate data and can serve read requests.

Benefits:
« Ensures high availability in case the primary node fails.
« Improves read scalability by distributing read operations across replicas.
« Provides data redundancy for disaster recovery.

Example: In MongoDB, a replica set maintains multiple copies of data across different nodes.

Sharding:

Sharding is the process of partitioning data horizontally across multiple servers, called shards,
where each shard holds a subset of the total dataset.

Benefits:
« Enables handling of large-scale datasets by splitting them across servers.
« Improves write and read performance by parallelizing data access.
« Supports scalability by allowing more shards to be added as needed.

Example: In MongoDB, sharding uses a shard key to determine which shard stores a particular
document.

20. Explain Benefits of NoSQL

High Scalability: NoSQL databases offer horizontal scaling through sharding, making them
capable of handling large amounts of data and growing with demand.

Flexibility: NoSQL databases accommodate unstructured or semi-structured data, making
them suitable for applications with evolving data models.

High Availability: Auto-replication features enhance data availability by replicating data in case
of failures.

Performance: NoSQL databases are optimized for handling large data volumes and traffic,
resulting in improved performance.

Cost-effectiveness: NoSQL databases are often cost-effective due to their simplicity and
reduced hardware/software requirements.

Agility: Well-suited for agile development methodologies.

Module 5: NoSQL using MongoDB

21. Explain MongoDB Sharding

Sharding in MongoDB enables horizontal scaling by distributing data across multiple servers
(shards). It is used to handle large datasets that exceed the capacity of a single server. Sharding
is a method for allocating data across multiple machines.

MongoDB used sharding to help deployment with very big data sets and large throughput the
operation. By sharding, you combine more devices to carry data extension and the needs of read
and write operations.

Data 1 Data 2 Data 3

NG

Routing Server Configuration

Server
Shard 1 Shard 2 Shard 3
Data 3 Data 1 Data 2

Server 1 Server 2 / \ Server 1 Server 2

Server 1 Server 2

Replica 1

Replica 2

Sharding determines the problem with horizontal scaling, breaking the system dataset and store
over multiple servers, adding new servers to increase the volume as needed. Now, instead of
one signal as primary, we have multiple servers called Shards. We have different routing servers
that will route data to the shard servers.

Advantages of Sharding:
1. Scalability: Easily adds more servers and distributes data automatically.
2. Load Balancing: Reduces the number of operations each shard handles.

3. Increased Capacity: Total storage and performance scale with more shards.

22. Explain MongoDB CRUD Operations.

In MongoDB, CRUD operations allow users to interact with the database by Creating, Reading,
Updating, and Deleting documents in collections. Each operation plays a vital role in managing
NoSQL data effectively.

1. Create (Insert)
This operation is used to add new documents to a collection.
« insertOne(): Adds a single document.
« insertMany(): Adds multiple documents.
Example:
db.students.insertOne({ name: "Aryan", age: 21, course: "DBMS" });
2. Read (Find)
This retrieves documents based on specified criteria.
« find(): Returns a cursor to all matching documents.
« findOne(): Returns the first matching document.
Example:
db.students.find({ course: "DBMS" });
3. Update
Used to modify existing documents.
« updateOne(): Updates the first matched document.
« updateMany(): Updates all matched documents.
Operators used: $set, $inc, $unset, etc.
Example:
db.students.updateOne(
{name: "Aryan"},
{ $set: {age: 22}}
);
4. Delete
Used to remove documents from a collection.
« deleteOne(): Deletes the first matched document.
« deleteMany(): Deletes all matched documents.
Example:

db.students.deleteOne({ name: "Aryan"});

23. Explain basic data types in MongoDB
String: Most commonly used data type to store text (e.g., "name": "Ayaan").
Integer: Stores numerical values (e.g., "age": 21).
Boolean: Stores true or false values (e.g., "isStudent": true).
Double: Stores floating-point numbers (e.g., "score": 88.5).
Array: Stores multiple values in a single key (e.g., "skills": ["Python", "C++"]).

Object: Stores embedded documents (e.g., "address": {"city": "Mumbai", "pin": 400001}).

Module 6: Trends in advance databases

24. What is a Graph Database? What are the features of Graph Database?

A graph database is a type of NoSQL database that is designed to store and process data in the
form of graphs. Graph databases are particularly well-suited for managing highly interconnected
data and are used to represent and query relationships between entities.

The fundamental components of a graph database are nodes, edges, and properties.

Nodes: Represent entities in the graph.

Edges: Represent relationships between nodes.

Properties: Key-value pairs associated with nodes and edges to store additional information.

(

Nodes

Relationships
Attributes

Data graphS‘J

\,

Fig. 9.5.1: Graph Database Concept

Features of Graph Databases:

1.

Graph-based Design:
They store data as nodes and connections (edges), so you don’t need to convert it into
tables. It’s a natural way to show how things are related.

. Fast at Finding Links:

Graph databases are really good at quickly checking how things are connected. This is
helpful for things like finding friends of friends.

. Flexible Structure:

You don’t need to stick to one fixed layout. You can add new types of data or connections
whenever you want, without changing everything.

. Great for Connected Data:

Perfect for data that has lots of links—Llike social media, recommendation systems, or
spotting fraud.

. Special Query Language:

They use their own easy-to-use language made just for searching through graphs and
relationships.

25. Explain Spatial Database in detail

A Spatial Database is a type of database that is optimized to store and query data related to
objects in space, including points, lines, and polygons. These objects represent real-world
geographical entities like cities, rivers, roads, and boundaries.

Spatial Data Types:

Point: Represents a single location in space, defined by its coordinates (latitude, longitude).
Line String: Represents a sequence of connected line segments, forming a path.

Polygon: Represents a closed, planar area defined by a sequence of connected points.

Geometry Collection: A collection of spatial objects of different types, such as points, lines, or
polygons.

Spatial Data Models:

Vector Model: Represents spatial data as discrete objects with precise geometry (points, lines,
polygons). Commonly used in GIS.

Raster Model: Represents spatial data as a grid of cells, where each cell has avalue.

Spatial Indexing:

R-Tree: A tree structure that is used to organize spatial data in a way that facilitates efficient
spatial queries.

Quadtree: A tree structure that recursively subdivides a space into quadrants.

Examples of Spatial Databases:
o PostGIS (extension of PostgreSQL)
« Oracle Spatial
« MySQL Spatial Extensions

26. Explain Temporal Database in detail

A Temporal Database is designed to store and manage data that changes over time. Unlike
traditional databases that only reflect the current state of data, temporal databases maintain
historical records, allowing users to track changes and query data as it existed at specific points
in time.

These databases typically use two-time dimensions: valid time, which indicates when a fact is
true in the real world, and transaction time, which records when the data was stored in the
database. Some systems support bi-temporal data, combining both dimensions to provide a
comprehensive timeline of data changes.

Time Representation:

Point-in-Time Representation: Represents data as it exists at a specific point in time. Querying
retrieves data valid at a particular timestamp.

Interval Representation: Represents data as valid within a specific time interval.

Incorporating Time in Relational Databases:
Temporal Tables:

Tables are extended to include temporal columns for valid time and transaction time. Each row
in the table has associated time intervals.

Temporal Queries:

Temporal databases support temporal queries that involve querying data based on valid time,
transaction time, or both. Common operations include "time travel" queries to retrieve data at a
specific point in time.

Temporal Constraints:

Temporal databases can enforce temporal constraints, ensuring that data in the database
adheres to valid time and transaction time semantics.

Challenges in Temporal Databases:

Data Volume: Maintaining historical versions of data can lead to increased data volume,
impacting storage requirements.

Query Complexity: Temporal queries can be more complex than traditional queries.

2019 May
Q1. Answer the following (any four):

a) What are the operations performed on files?

b) Explain join operations in DBMS.

c) What are the various allocation techniques in distributed databases?
d) Why is object-oriented database needed?

e) Explain security issues in database design.

Q2.

a) What is heuristic query optimization? Explain steps with example.
b) Explain concurrency control in distributed databases.

Qs.

a) Explain the following types of fragmentation with suitable examples:
i. Horizontal fragmentation
ii. Vertical fragmentation
iii. Derived fragmentation

b) Compare document-oriented databases and traditional databases.

Q4.

a) What are the steps in query processing and optimization in distributed databases?
b) Explain mobile computing architecture for database systems.

Q5.

a) Explain hashing techniques used in databases.
b) Explain discretionary access control with example.

Q6. Write short notes on (any two):

a
b
C
d

Measures of query cost
Two-phase commit protocol
Document-oriented database
Multimedia databases

~— = N

2019 Dec
Q1. Answer the following (any four):

a) Explain query processing in distributed databases.
b) Why do we need document-oriented databases?

c) What is cost-based query optimization?
d) What is SQL injection? Explain with example.

Q2.

a) Explain external sorting with example.
b) Consider a relation R(A, B, C, D, E) horizontally fragmented into R1, R2, and R3. Write the
process to reconstruct the original relation from these fragments.

Qs.

a) What is the three-phase commit protocol? Explain with example.
b) Explain XML and XML Schema with example.

Q4.

a) Explain architecture of distributed database system.
b) What are the types of spatial data models?

Q5.

a) What is temporal data model? Explain with example.
b) Explain discretionary access control with example.

Q6. Write short notes on (any two):

a) Single-level ordered index
b) Replication and allocation techniques
c) Mandatory access control

2022 Dec
Q1. Solve any four:

a) Draw the neat diagram of query processing.

b) Describe query evaluation plan.

c) Compare between SQL and NoSQL.

d) Write the different parameters for measuring the cost of query.
e) What is Graph database?

Q2

a) Discuss the phases of distributed query processing with neat diagram.
b) Explain Temporal database.

Q3

a) Explain CAP Theorem in NoSQL Databases.

b) XML document of ‘Restaurant Menu Card’ has food items categorized into Starters, Drinks,
Chinese, South and Punjabi. Each food item element contains name, cost, calories, and
veg/non-veg flag. Write XML Schema for the above XML document.

Q4

a) Explain MongoDB Sharding.
b) Explain ACID properties.

Q5

a) Explain 2PC in detail with neat diagram.
b) Explain JSON data types. Give example of JSON document.

Q6

a) Explain Spatial Database.
b) Explain MongoDB CRUD Operations.

2023 May
Q1. Attempt any four

a
b
C
d

What are the features of Graph Database?

Explain Basic data types with MongoDB.

List responsibilities of Transaction Manager in Distributed Transaction Model.
Explain Query Processing issues in Heterogeneous Database.

Q2

a) Explain how horizontal scaling is done through sharding in MongoDB.
b) Explain Three Phase Commit (3PC) Protocol.

Q3

a) Explain Allocation techniques for Distributed Database Design.
b) Explain Basic JSON syntax with data types.

Q4

a) Create an XML Document of 'Restaurant Menu Card' which has food items categorized into
Drinks, Starters, and Main Course. Each food item element contains name, cost and veg/non-
veg flag.
e Write DTD rules for above XML Document. (8 marks)
e Write the following query in XQuery (2 marks):
“List the entire list of food name with non-veg flag.”

b) Explain Replication and sharding in NoSQL.

Q5

a) Explain Phases in Distributed Query Processing in Distributed Database.
b) Explain Basic JSON syntax with data types.

Q6. Write a detailed note on the following (Any Two):

a) NoSQL data modelling

b) Basic Data types in MongoDB

c) Failures in Distributed Database
)

d) CAP theorem in NoSQL

2023 Dec
Q1. Solve any four

a) Compare between SQL and NoSQL.

b) Explain BASE Theorem.

c) Explain sharding in MongoDB.

d) Draw the neat diagram of query processing.
e) What is Graph database?

Q2

a) Explain Spatial Database. (10 marks)
b) Write an XML to accept student details (Name, ID, Branch and CGPA).
Write an XSL to display the list of students in descending order of their CGPA. (10 marks)

Q3

a) Explain with a suitable example XML DTD? (10 marks)
b) Explain Data Fragmentation in Distributed Databases. (10 marks)

Q4

a) Compare 2PC and 3PC protocol. (10 marks)
b) Explain ACID properties. (10 marks)

Q5

a) Explain Distributed DBMS Architecture. (10 marks)
b) Explain MongoDB CRUD Operations. (10 marks)

Q6

a) Discuss the phases of distributed query processing with neat diagram. (10 marks)
b) Explain Benefits of NoSQL. (10 marks)

	Question Bank
	1. Distributed DBMS
	2. Query Processing and Optimization
	3. JSON, XML
	4. NoSQL
	5. NoSQL using MongoDB
	6. Trends in ADBMS
	PYQs

